AE-MAESTRO Integrated Lift Control System

USER MANUAL

Document Name: AE-MAESTRO User ManualDocument Code: AEM-UMENDocument Version: 1.07cSoftware Version: C 2.30u / M 2.20h

INDEX

INDEX	1
PREFACE	3
CHAPTER 1 – SPECIFICATIONS OF THE SYSTEM	4
1.1) GENERAL DESCRIPTION OF THE DEVICE	
1.2) SERIAL COMMUNICATION AND CONFIGURATIONS	
1.3) DOORS	
1.4) CAN PORTS	
1.5) SAFETY LINE	
1.6) CONTACTOR-LESS APPLICATION (STO SAFE TORQUE OFF)	
1.7) PANEL VOLTAGE	
1.8) INPUTS	
1.9) OUTPUTS 1.10) UNINTENDED CAR MOTION (UCM)	
1.10) ONIVIENDED CAR MOTION (CCM)	
1.12) DISTANCE BASED OPERATION	
1.13) FIRE FUNCTIONS	
1.14) ACCESS CONTROL SYSTEMS	
1.15) GROUP OPERATION	
1.16) VIP TRAVEL	
1.17) PRIORITY FUNCTION	
1.18) EN81-21 LOW PIT/LOW HEADROOM APPLICATIONS	
1.20) DATA TRANSFER	
1.21) MAINTENANCE CONTROL	
1.22) TEST MENU 1.23) ANTI-ROLLBACK AND PRE-TORQUE IN STARTING	
1.23) ANTI-KOLLBACK AND FRE-TORQUE IN STARTING	
CHAPTER 2 – HARDWARE AND TERMINALS	14
2.1) GENERAL HARDWARE	
2.1A) DEVICE TERMINALS	
2.2) MONITORING TOOLS AND SYSTEMS	
2.3) CAR AND LANDING STATIONS	
2.4) INPUT HARDWARE	
2.5) INPUT FUNCTIONS	
2.6) OUTPUT HARDWARE	
CHAPTER 3 – BASIC APPLICATIONS	
3.1) MOTOR CONNECTION CIRCUIT	
3.2) COLLECTING CAR POSITION INFORMATION	
CHAPTER 4 – PARAMETERS	
4.1) P01-MAIN PARAMETERS	
4.2) P02-B PARAMETERS	
4.3) P03-TIMER PARAMETERS.	
4.4) P04-SPEED PARAMETERS	
4.5) P5-CONTROL PARAMETERS	
4.6) P06-MOTOR PARAMETERS	
4.8) P08-SPECIAL PARAMETERS	
····, - ··	

CHAPTER 5 – SERVICES AND UTILITIES	
5.1) SETTING FLOOR LEVELS IN ENCODER APPLICATIONS	
5.2) PRIORITY FUNCTION	
5.3) ACCESS CONTROL SYSTEM	
5.4) MAINTENANCE CONTROL	
5.5) PRE-TORQUE AND ANTI-ROLLBACK	
5.7) SETTING PASSWORD	
5.8) FACTORY DEFAULTS	
5.9) BACKUP OF PARAMETERS	
CHAPTER 6 – ERROR LOG AND ERROR CODES	77
6.1) ERROR CODES	77
CHAPTER 7 – UCM SERVICES (UNINTENDED CAR MOTION)	
7.1) UCM	
7.2) UCM IN ELECTRIC LIFTS WITH ASYNCHRONOUS MOTOR	
7.3) UCM IN ELECTRIC LIFTS WITH SYNCHRONOUS MOTOR (GEARLESS MACHINE)	
7.4) MANUAL UCM TEST	
CHAPTER 8 – RESCUE SYSTEMS	
8.1) ELECTRONIC RESCUE SYSTEM	89
8.2) MANUAL RESCUE SYSTEM	
CHAPTER 9 – FIRE SERVICES	
9.1) SELECTING FIRE STANDARD	
9.2) FIRE EXIT FLOOR AND FIREMAN ACCESS FLOOR DEFINITION	
CHAPTER 10 – TEST SERVICES	
10.1) TEST MENU	
10.2) SHAFT LIMIT TEST	
CHAPTER 11 – EN81-21 LOW PIT/LOW HEADROOM APPLICATIONS	
11.1) AMI-100 DEVICE	
11.2) CHECKING OF MANUAL OPENING OF SHAFT DOORS WITH TRIANGULAR KEY	
CHAPTER 12 – SPECIAL FUNCTIONS	
12.1) TKF	
12.2) SIMULATION MODE	

PREFACE

AE-MAESTRO is an integrated lift control system. It consists of a lift controller and a motor driver in one device. An integrated device has important benefits when compared to the classical approach having a lift controller and a motor driver, separately. Wiring and adjusting an integrated device is much simpler. All of the wiring and parameters necessary to interface the motor driver and the controller are not implemented. Motor motion is controlled directly by lift software. So maximum efficiency in motion control is achieved.

In this manual, you will find detailed information about AE-MAESTRO. However, since there are continuous developments in software it is possible that the software version you are using may not be fully compatible with this manual. If this is the case, you can download the most recent manual from <u>www.aybey.com</u>.

You can send an e-mail to <u>support@aybey.com</u> either to get more technical information about the system or to send any comments. Please feel free to contact us for any problems or suggestions. Bear in mind that all these systems have been developed mainly by benefiting from the criticism of customers and users.

Aybey Elektronik

CHAPTER 1 – SPECIFICATIONS OF THE SYSTEM

1.1a) GENERAL DESCRIPTION OF THE DEVICE

AE-MAESTRO includes **lift controller** and **motor driver** in one device, ILC. It also includes **EMC filter, dc choke coil** and **rescue system power isolating circuits** inside the device. Therefore, it provides fully EMC compatibility with this feature. This compact feature also leads to cost reduction and simplicity in panel manufacturing.

AE-MAESTRO has a very powerful structure. It has a **double micro architecture**. One DSP, digital signal processor has been dedicated to motor driving job. Another powerful microprocessor controls lift functions and shaft signals. So, high performance in driving motor and integration of the lift controller is achieved.

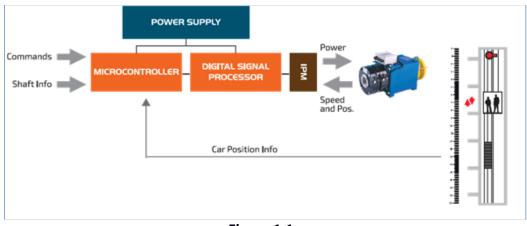


Figure 1.1a

AE-MAESTRO is a certified **STO** device. Therefore, there are no contactors between the motor driving outputs of the device and the motor. Motor windings are connected directly to the device. Contactor-less control system has several advantages. The first one is the reduction of the cost of the materials used. The second one is significant noise reduction due to absence of the switching elements in the panel. The absence of the mechanical switching elements at the output of the motor driving transistors (IGBT) is in fact the most important advantage in technical aspect. The fact that IGBT currents are always damping naturally in motor windings instead of cut mechanically by any element extends the life of these vital elements considerably.

Figure 1.1b

The device complies the requirements of EN81-20/50 lift standards for electric lifts. However, it can be used also in conformity with EN81-1+A2 or EN81-1+A3 standards by adjusting related parameters. It supports a wide range of lift applications for up to 64 floors. In addition to being able to operate in closed loops with geared and gearless machines in new elevators, it can be used in open loop without encoder in single speed and double speed machines for modernization purposes. The device supports home-lift applications that comply with the machine directive with the software included.

AE-MAESTRO makes use of intelligent electronic units communicating via CAN-BUS in the overall lift system. The system comes with three CAN ports which provide flexibility in connecting CAN-units. The communication hardware between car and controller is designed to be a fault tolerant CAN, to increase the robustness to against any electronic disturbances in the connection.

AE-MAESTRO supports parallel and serial communications for landing panels and group operations for up to 8 lifts. There are various function boards in AE-MAESTRO system to support specific functions and increase flexibility. It also has integrated lift access control system and VIP travel facilities in its software to restrict the use of the lift.

AE-MAESTRO supports many elevator standards (EN81-1, EN81-1 + A3, EN81-20 / 50, EN81-70, EN81-72, EN81-73, EN81-41, EN81-2). For this reason, it can be used easily in new lifts and in modernization in many countries.

AE-MAESTRO has advanced data communication facilities. There are interfaces for Ethernet and USB connections. So, the parameters in the controller can be edited or the motion of the lift can be observed either by a computer or a mobile device locally as well as via the internet.

1.1b) ELECTRICAL SPECIFICATIONS AND RATINGS (3x400V Series)

Technical specifications and maximum ratings are shown in Table T-1 Device will be damaged if maximum ratings are exceeded or if improper auxiliary units are used. Therefore, select auxiliary devices according to the tables shown below.

MODEL (400V Series)	AEM404	AEM405	AEM407	AEM411	AEM415	AEM422	AEM430	
Nominal Motor Power	4 kW	5.5 kW	7.5 kW	11 kW	15 kW	22 kW	30 kW	
	(5.5 HP)	(7.5 HP)	(10 HP)	(15 HP)	(20 HP)	(30 HP)	(40 HP)	
Nominal Output Current	9 A	13 A	18 A	25 A	32 A	45 A	60 A	
Maximum Current	18 A	26 A	36 A	50 A	64 A	90 A	120 A	
Allowed Time	5 s	5 s	5 s	5 s	5 s	5 s	5 s	
Control Circuit Supply		1 Dhac	o 100V	2401/ 40		7 L 0/ E		
Voltage	1-Phase 100V240V AC 50/60 Hz +- %5							
Line Voltage		3-Phas	e 340V	420V AG	C 50/60 H	z +- %5		
Motor Output Voltage		3-P	hase 0V	420V AC	0100) Hz		
Carrier Frequency				616 kHz				

Table T-1 Electrical Specifications of 400V Series

• Select **braking resistors** by regarding Table T-2. Please not that these values are valid for devices for 3x400V line.

Braking Resistors for 400V Series	AEM404	AEM405	AEM407	AEM411	AEM415	AEM422	AEM430
Braking Resistor Values	120 Ω	80 Ω	60 Ω	40 Ω	30 Ω	20 Ω	15 Ω
Minimum Resistor Power of Asynchronous Motor (Car speed < 1.6m/s)	1.000 W	1.200 W	1.500 W	2.200 W	3.000 W	4.400 W	6.000 W
Minimum Resistor Power of Asynchronous Motor (Car speed ≥ 1.6m/s)	1.500 W	1.800 W	2.250 W	3.300 W	4.500 W	6.600 W	9.000 W
Minimum Resistor Power of Synchronous Motor (Car speed < 1.6m/s)	1.500 W	1.800 W	2.250 W	3.300 W	4.500 W	6.600 W	9.000 W
Minimum Resistor Power of Synchronous Motor (Car speed ≥ 1.6m/s)	2.000 W	2.400 W	3.000 W	4.400 W	6.000 W	8.800 W	12.000 W
Minimum Resistor Power of Synchronous Motor (Car speed ≥ 2.0m/s) (With FAN when car speed ≥ 2.5m/s)	2.500 W	3.000 W	3.750 W	5.500 W	7.500 W	11.000 W	15.000 W

Table T-2 Electrical Specifications of Braking Resistors (for 400V Series)

• Select **circuit breakers** used in the control panel by regarding Table T-3.

Table T-3 Technical Specifications of the Circuit Breaker Units (for 400V Series)

Circuit Breaker Selection	AEM404	AEM405	AEM407	AEM411	AEM415	AEM422	AEM430
Power Input Supply Circuit Breaker (F3X)	16 A	20 A	25 A	32 A	40 A	63 A	80 A
Control Circuit Input Power Circuit Breaker (F4)				1 A			
Battery Circuit Breaker (FBAT)	16 A	16 A	16 A	25 A	25 A	32 A	50 A
UPS Circuit Breaker (FTR1)				4 A			

• Select cables used inside the control panel and for auxiliary devices by regarding Table T-4.

Minimum Cable Cross Sections	AEM404	AEM405	AEM407	AEM411	AEM415	AEM422	AEM430
Power Input and Motor Cables	2,5 mm ²	2,5 mm ²	4 mm ²	4 mm ²	6 mm²	10 mm²	10 mm ²
Braking Resistor Cables	2,5 mm ²	2,5 mm ²	2,5 mm ²	2,5 mm ²	4 mm ²	4 mm ²	6 mm ²
UPS Connection Cables	1,5 mm2	2 <i>,</i> 5 mm2	2,5 mm2	2,5 mm2	4 mm2	4 mm2	6 mm2
Battery Connection Cables	4 mm2	4 mm2	4 mm2	4 mm2	4 mm2	6 mm2	6 mm2
Control Terminal Cables				0,75 mm ²			
Encoder Terminal Cables				0,35 mm ²			

Table T-4 Minimum Cable Cross Sections (for 400V Series)

1.1c) MECHANICAL SPECIFICATIONS

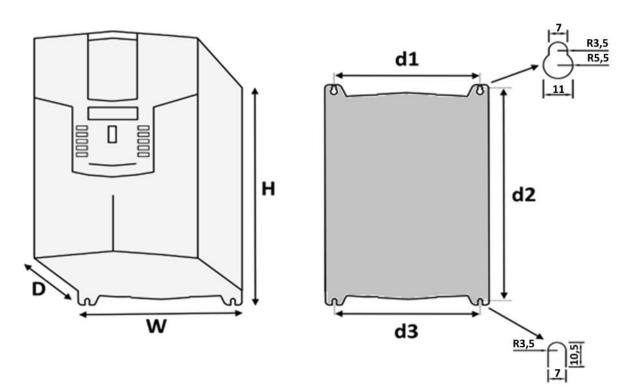


Figure 1.1c External Dimensions

Figure 1.1d Mounting Holes

able T-5 Physical Dimensions and Mounting Holes [mm]
--

Driver Model		Dimensior	าร		Mounting Ho	les
Diver woder	н	W	D	d1	d2	d3
AEM04AEM15	375	255	215	220	356	220
AEM22AEM30	380	330	280	300	368	300

1.2) SERIAL COMMUNICATION AND CONFIGURATIONS

The communication between car and controller is serial. However, the landing panels can be connected in series as well as in parallel. The communication system is CAN-Bus. If the landing panels are parallel, then it is called as "Car Serial" and if the landing panels are serial, it is "Full Serial". ALSK terminal board should be used in full serial applications and ALPK in car serial applications.

Landing panels can be connected in both ways, serial or parallel. The serial interfaces between car and controller is low speed, fault tolerant mode where the interface for landings can be selected as low speed fault tolerant or high speed. The terminal board used in the controller depends on the serial configuration as well as prewiring or standalone cases and these are explained in Section 2.3.

1.3) DOORS

The device supports two car doors. There are separate door open, door close, photocell and door limit inputs for each door. There are also various timers associated with doors. Adequate door open checking tests in conformity to the lift standard EN81-20/50 have been developed for one and two doors as well as full and semi-automatic doors. The door bridging board SDB is required to test the doors at arrival when EN81-20/50 standard is selected [A10=2]. Therefore, SDB board must be plugged into ILC even when no relevelling or door pre-opening facilities are requested but if the standard has been selected as EN81-20/50.

1.4) CAN PORTS

There are three CAN ports where CANO and CAN1 are already built in the device. CAN2 needs a CAN interface board to be used. CANO is low speed and works in fault tolerant mode which is used as default for the car circuit. CAN1 is high speed CAN port and used as default for landing panels. However, any CAN port can be configured for any circuit (landing, car, group, absolute encoder, etc.). CAN ports can be configured by means of E7... E10 parameters.

1.5) SAFETY LINE

1.5.1) Safety line voltage:

The power supply of the safety circuit is labelled as 110 and 150, where 110 is the starting terminal and 150 is the return terminal. Safety Circuit Voltage can be selected by the customer. The voltages to be selected for safety circuit are 48Vdc, 220/230Vac

1.5.2) Safety line structure:

Safety line starts to flow from the terminal 110 into the shaft devices. All devices, through which the safety line passes before lift doors, are to be between 110 and 120. 120 is the starting point of the door safety contacts. The door circuit ends at the terminal 140 and also 140 is the end of the safety line. When any door or any safety contact in the shaft is open, then there must be no voltage present at terminal 140. If it is present, then this means a wrong wiring or any fault in the devices.

The connection terminals of the shaft and the door contacts are found in wiring diagrams of the related application. There are various connection diagrams for specific lift standards, lift applications, door types and number of doors. Please check first if the given electric diagram matches your application exactly. Otherwise consult our support department to get the appropriate wiring diagram before starting.

The labels 120 ... 140 on the left side of the LED display on the device show the closed terminals of the safety line directly.

1.6) Contactor-less Application (STO Safe Torque Off)

AE-MAESTRO is a certified STO device and it can be connected without contactors directly to the motor windings (Safe Torque Off-STO). Contactor-less control system has several advantages. The first one is the reduction of the cost of the materials used. The second one is significant noise reduction due to absence of the switching elements in the panel. The absence of the mechanical switching elements at the output of the motor driving transistors (IGBT) is in fact the most important advantage in technical aspect. The fact that IGBT currents are always damping naturally in motor windings instead of cut mechanically by any element extends the life of these vital elements considerably.

The implementation of this feature is explained in section 3.1.2.

1.7) PANEL VOLTAGE

Except for the safety line, there is only one power supply in the system which is 24V DC. It is the power source in the controller to supply all electronic boards, signals and detectors. The current rating (power) of the supply must be selected by taking into consideration the current consumption of the panels. However, it should be minimum 75 W.

1.8) INPUTS

All inputs are 100% galvanically isolated from the microcontroller circuit since they are connected via optocouplers to this circuit. Input terminals are programmable. The user can assign any function to these programmable input terminals. Input functions and input terminal assignment procedure are explained in section 2.5

1.9) OUTPUTS

All outputs are 100% galvanically isolated from the microcontroller circuit since they are connected via optocouplers to this circuit. Mainly relays are used as outputs and output terminals are programmable. The user can assign any function to these programmable output terminals. Output functions and output terminal assignment procedure are explained in chapter 2.6.

1.10) UNINTENDED CAR MOTION (UCM)

AE-MAESTRO supports numerous UCM test and control facilities for geared and gearless lift systems. UCM facilities are explained detailed in chapter 7. UCM functions will not be active if parameter A10 has been set for EN81-1+A2, [A10=0].

1.11) CAR POSITION INFORMATION

Car position information (floor selector) can be collected with encoders or magnetic switches. Using encoder signals enables distance-based operation. Nevertheless, the device supports simple switching method by magnetic switches when there is no encoder used in the system. Car position detection systems will be explained in section 3.2.

1.12) DISTANCE BASED OPERATION

When an encoder (incremental or absolute) has been selected as the car position detector then AE-MAESTRO works as distance-based operation system. In distance-based operation the distance to the target floor is mm based and system designs travel paths automatically. All speed transition points, acceleration, deceleration and travel speeds are calculated according to the distance and the maximum speed restricted by the user parameters.

1.13) FIRE FUNCTIONS

ILC supports both lift standards related to fire event, EN81-72 and EN81-73. The standard which will be used in lift operation should be defined in parameter A14. The functions and parameters related to the behaviour of the lift in fire and using it in fire-fighter operation is explained in chapter 9.

1.14) ACCESS CONTROL SYSTEMS

Access control utility permits only the users with appropriate permission to use the lift, in other words, it restricts any person who is not allowed to use the lift for a specific floor or time interval. For this purpose, each lift user should have a RFID card or i-Button key with a unique user ID. This utility is present in AE-MAESTRO software. You do not need any access control system to implement it. You only need access control readers in landing and car panels. Access control system is explained in section 5.3.

1.15) GROUP OPERATION

AE-MAESTRO controller can work in lift groups up to eight lifts. Each group lift must have CSI Can interface board plugged into. Group controller board ICG must be used as group manager. Group operation is explained in section 5.6.

1.16) VIP TRAVEL

ILC has a VIP Travel function. When any of the VIP related input functions VP1 (46), VP2 (47) or VP3 (48) is activated then the lift immediately moves to the floor defined in related parameters [B23]-1st VIP Floor, [B24]-2nd VIP Floor and [B25]-3th VIP Floor respectively. If the lift is in motion in the same direction with the VIP floor target then it continues its travel until reaching the VIP floor. If the motion and the VIP floor target directions are opposite to each other, then the lift stops at the first floor and reverses its direction towards to the VIP floor and starts its travel again. VP1 has the highest priority, VP2 medium and VP3 the lowest. That means when there are more than one active VIP terminals then the one with the highest priority is selected (VP1 >VP2 > VP3).

1.17) PRIORITY FUNCTION

ILC software has a priority function. This function is very useful in buildings where public lifts are working. In case of emergency, these lifts can be called and used as a private lift by inhibiting normal usage. This system works only in full serial systems where landings are serial and requires access control readers (RFID or i-Button) in all landings and cars. Priority function is explained in section 5.2.

1.18) EN81-21 LOW PIT/LOW HEADROOM APPLICATIONS

EN81-21 standard sets the basic rules to design lifts which do not satisfy shaft requirements of EN81-20/50. ILC supports some special equipment designed for EN81-21 applications. Furthermore, it offers some very general functions. See Chapter 11 for more detailed explanation.

1.19) CAR CALL CANCELLATION

Car calls can be cancelled by pressing once more onto the car call button. However, the car call to which the lift is moving to cannot be cancelled. This operation is controlled by parameter B45.

1.20) DATA TRANSFER

AE-MAESTRO supports computer connection via USB or Ethernet by means of AybeyNET software. By using AybeyNET a computer can be connected directly, via a local network (LAN) or via the Internet.

AybeyNET has the following features:

- Lift motion and calls can be observed in real time
- All timings and the status of the inputs and the outputs can be observed in real time
- Error log can be obtained as digital data
- All parameters can be checked and modified.
- All input and output settings can be checked and modified.
- All Parameters can be saved, loaded, transferred and printed.

You can download AybeyNET software and related drivers from the link <u>aybey.com/en/technical-</u> <u>support/lift-control-systems/icl/application-software/</u>. You can find detailed information to install and use the software in "AybeyNET Installation Manual".

1.20.1) USB

In order to connect any PC to a lift controller with AybeyNet via USB, it is necessary to have a USN add-on board plugged onto the mainboard. So, the controller can be monitored by a PC in the machine room to adjust the parameters and timers or to detect an error.

1.20.2) Ethernet

In order to connect a PC to a local network (LAN) or to the internet it is necessary to plug the ETN add-on board onto the mainboard. ETN board is the Ethernet interface. So, the controller can be accessed by a PC anywhere in the world via internet to adjust the parameters and timers or to detect an error.

1.21) MAINTENANCE CONTROL

There are two independent control systems for maintenance mode activation. The first one is by setting a maintenance time and the second is by specifying a maximum number of starts for the lift. If the adjusted maintenance time or number of starts is exceeded then the lift switches to maintenance mode and does not accept calls anymore. Maintenance control is explained in section 5.4.

1.22) TEST MENU

There is a special utility in ILC system for testing the lift in normal operation by creating random calls. Test menu is explained in section 10.1.

1.23) ANTI-ROLLBACK and PRE-TORQUE IN STARTING

Integrated device has various functions to overcome rollback at start motion. The best method to select depends on the traction system, type of the motor as well as presence of any load feedback system. The device can use analog or digital feedback of weight transducer system to estimate required **pre-torque**. It also supports **anti-rollback** operation. Starting mode is determined by the parameter **S19**. Read the section 5.5 for more information.

1.24) TIMING

The timing diagram is shown in Figure 1.21a. The device has two main variables related to motion phases and device stages. This diagram shows what happens when a motion request is received. The line indicated as **control** in Figure 1.21a shows controller stages and the one indicated as **motor** motion phases. These two variables are displayed on the screen of the hand terminal to give information about the motion state of the device (control/motor). It can be easily seen on the timing diagram how the active and passive states of device motor output, brake, enable and contactor are changing. By using these two variables, related stages in the time diagram can be identified.

									F	TIMING	CHART	F								
	REST	REST	READY	CONT_ON	ENB_ON					TR	TRAVEL						AT_STOP		ENB_OFF	REST
	0	0	10	20	35						40						38		33	0
	0	0	0	0	0	41	42	42	43	44	45	46	47	48	49	59	60	61	0	0
		0	CONTROLLER	ER							MOT	MOTOR CONTROL	ROL						CONTR	CONTROLLER
		Normal Mode:	Close Door		Drive		Zero Speed			× V	Motor rotates – Lift moves	es - Lift I	moves >			Zero	Zero Speed			
	idle	Calls are received Other Modes:	cneck Inputs Check Safety	s c	5		At Start		Startinç	Starting Speed	× V	< Normal Travel >	vel >	Seeking Floor Level	Down to Zero		At Stop	INVEKIEK OFF	Drive Outputs Are Disabled	Job Completed
	-	Motion request	Activate SG Coil		only EN checking)	DriveON	BrakeON	BrakeON	Ramp Period to Start Speed	Starting Speed	Accelerating	Constant Speed	Decelerating	Creeping Speed	Stopping	Stopping Speed Detected	Brake Off	job Completed		
																ļ				
					ENABLE															
				CONTACTORS)RS															
						DRIVE T	RANSISTOR OUTPUTS	OR OUT	PUTS											
						ZERO SPEED										ZERO SPEED	ED			
											BR	BRAKE								
11		Safety C	Safety Circuit Closed																	
									igure ming	Figure 1.21a Timing Chart										

CHAPTER 2 – HARDWARE AND TERMINALS

2.1) GENERAL HARDWARE

2.1a) DEVICE TERMINALS

All terminals of the device are located under the front cover and the places of add-on boards are marked there. Figure 2.1a shows the connection terminals. The device has led indicators and a digital display on the front side. The device is supplied as standard with a dummy cover in place of the TFT screen. TFT screen is optional and can be used on the device as well as anywhere in the shaft where CAN bus is connected.

Main terminal blocks are shown in Figure 2.1b. The main hardware configuration is supplied to support EN81-20/50 lift standard. Therefore, almost no additional card is required in most applications. Two main add-on boards, door bridging and absolute encoder boards are left as option depending on the standard or motor type. Incremental encoder interface is built in. The device can also be used for the standard EN81-1+A3 or less without door bridging board.

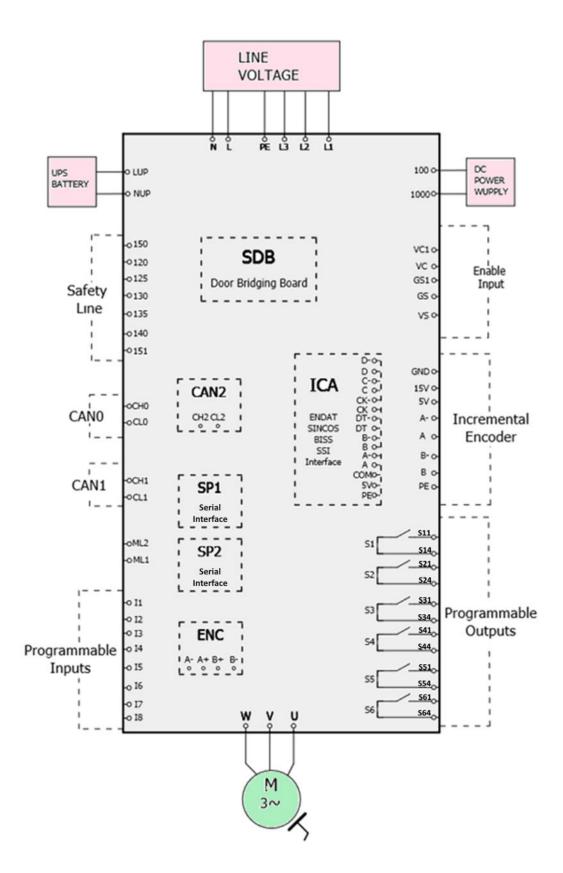


Figure 2.1b Main Terminals and the Locations of Add-on Boards

2.1b) CAUTIONS IN INSTALLING THE DEVICE

WARNING

- Read user manual carefully before installation.
- Switch off power (line, UPS or battery) and wait at least 5 min. before you remove the device cover.
- Connect earth (PE) terminal before you switch on power.
- Do not connect or disconnect a terminal while the device is powered.
- Make sure that you have left enough free air space around the system box. It is very important for air circulation to cool the device. It is advised to have a free space of minimum 50 mm at the sides and 100 mm above and below the system box as shown in Figure 2.1b.
- Do not use the device in places where excessive humidity, dust, explosive materials, or extraordinary chemical substances are present.
- Do not use the device under environmental conditions below -10 °C or above 40 °C.
- Do not install the device where the device is exposed to direct sunlight.

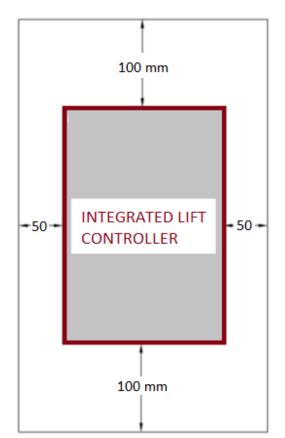


Figure 2.1.c Recommended free space around the device

2.1c) ELECTRONIC BOARDS IN THE SYSTEM

The electronic boards used in ILC and their descriptions are listed below.

SCB: This board is used in the inspection box and works as the car controller board. It collects car calls and detector inputs in car circuit. It contains 5 programmable relay outputs and 12 programmable inputs, 16 call registers, a battery charger for emergency power supply, and hardware for other lift functions in car. It also supports announce system when AFM (Announce Board) board is plugged.

PWL: This board is used in the inspection box and works as the car controller board used only in prewired systems. It collects car calls and detector inputs in the car top circuit. It contains 5 programmable relay outputs and **14** programmable inputs, a battery charger for emergency power supply, and hardware for other lift functions in car.

PWH: This board is used only in prewired systems in the inspection box. It serves as the terminal connection board of flexible cable in car.

PWS (PWF): This board has been designed to drive <u>only prewired Aybey car buttons</u> in prewired systems. It is usually placed into the car operating panel. It collects car calls, drives indicator signals and displays in car panel and carries on in-cabin announcement. Its code is PWF when AFM has been already plugged onto it.

PWSC (PWFC): This board has been designed to drive car buttons in prewired systems when not using Aybey pre-wired car buttons. It is usually placed into the car operating panel. It collects car calls, drives indicator signals and displays in car panel and carries on in-cabin announcement. Its code is PWFC when AFM has been already plugged onto it.

ALSK: This board is used in systems where landing panels are serial and serves as a terminal board for programmable inputs and outputs in controller and PTC. It contains 8 (12) programmable inputs.

ALPK: This board is used in systems where landing panels are parallel and serves as a call register well as a terminal board for programmable inputs and outputs in controller and PTC. It contains 8 (12) programmable inputs.

SPT: This board serves as a controller in shaft pit. It is communicating via CAN-BUS.

SDB: This is the door bridging board plugged onto the device.

SGD: This board controls the activation of the coil on speed governor.

OUT: This board contains 4 programmable output relays.

INPS: This board contains 4 programmable inputs.

CSI: This is the CAN interface board in fault tolerant mode. It can be used for lift group operation to communicate with other lifts or to have a separate CAN bus for landing panels.

CCI: This is the CAN interface board in high speed mode. It can be used to have a separate CAN bus for landing panels when landing panels have high speed CAN interfaces.

IO: It has 8 call registers on it. It is used to increase the number of call registers on ALPK.

USN: USB interface board for local PC connection.

ETN : It is the Ethernet interface board and is used to connect a PC to the controller either with a local area network (LAN) or via the internet.

CAN-IO: This board communicates via CAN-BUS and serves as a call register. One CAN-IO board has 16 call registers. It is used to expand the number of call registers in car circuit above 16 floors or above 16 call registers in systems where landing panels are not serial.

AFM: This board is a pluggable module and contains only memory for announcement data. It is used together with SCD, PWS and PWSC boards.

APE: This board is used only in prewired systems as an extension to PWS. It has 16 car call registers on it and increases the number of car calls.

HTKL (KLN/KLU): They are terminal boards for the controller box in pre-wired systems.

ICA: Integrated lift controller requires an add-on encoder board to drive synchronous motors called ICA. It supports Endat, SSI, BISS and SinCos encoder types.

2.2) MONITORING TOOLS AND SYSTEMS

2.2.1) FRONT LED PANEL

The device is equipped with a digital LED panel and 16 LED indicators.

There are 16 LED indicators in two columns. They give information about the status of some important variables. LED panel is used by default to show current floor number. However, it can be used to monitor a number of variables, too. This can be done by adjusting parameter [D03].

There is a bar between two LED columns. It shows the state of the system. Green means normal mode and yellow inspection mode. The colour changes to red in case of any error. In case of any motion the bar flashes.

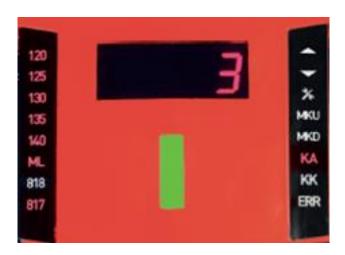


Figure 2.2.a Led Panel

2.2.2) TFT HAND TERMINAL

TFT intelligent hand terminal can be used on the device as well as anywhere in the shaft.

It is an optional unit.

It has a SD card socket. It can be used to update software of the device as well as carry parameters. The travel speed curves can be observed on the device.

Figure 2.2.b Main Screen

When you press **ENT** button on the main screen you will go to main menu where you can edit parameters execute various service tools and observe system variables.

Read TFT Hand Terminal Manual for more detailed information.

Figure 2.2.c Main Menu

2.3) CAR AND LANDING STATIONS

2.3.1) Connections between Car, Landings and Controller

The landing panels can be connected as serial or parallel. When landings are parallel then the configuration is called "car serial" and when landings are serial then the configuration is called "full serial". The serial interfaces between car and controller is low speed (fault tolerant mode), where the interface for landings can be selected as low speed fault tolerant or high speed.

Boards and connections in prewired system is shown in Figure 2.3a. The landing units used in prewired system are the same as the ones in full serial communication, only car circuit is different.

2.3.2) CALLS

2.3.2.1) CAR CALLS

- i. Non-prewired systems: Car calls are collected by the car controller board SCB for up to 16 stops. For more than 16 stops, CAN-IO boards must be connected to the car circuit to collect car calls. Each CAN-IO board has a 16-stop capacity.
- **ii. Prewired systems**: Car calls are collected by the car controller board PWS for up to 16 stops. For more than 16 stops, APE boards must be connected to the car circuit to collect car calls. APE board has a 16-stop capacity.

2.3.3) LANDING CALLS

- i. Landing Serial Systems: The terminal board ALPK has 8 call registers onboard. An I/O board can be plugged onto ALPK to increase the number of call registers to 16. For greater numbers, CAN-IO boards must be added to increase number of landing call registers. Each CAN-IO board has 16 call registers.
- **ii. Full serial systems:** CAN landing units collect and send calls at the landings. No additional board is required for any number of stops. The landing panels used in this application must have protocols in accordance with the controller.

SYSTEM BOARDS IN PREWIRED CONNECTIONS

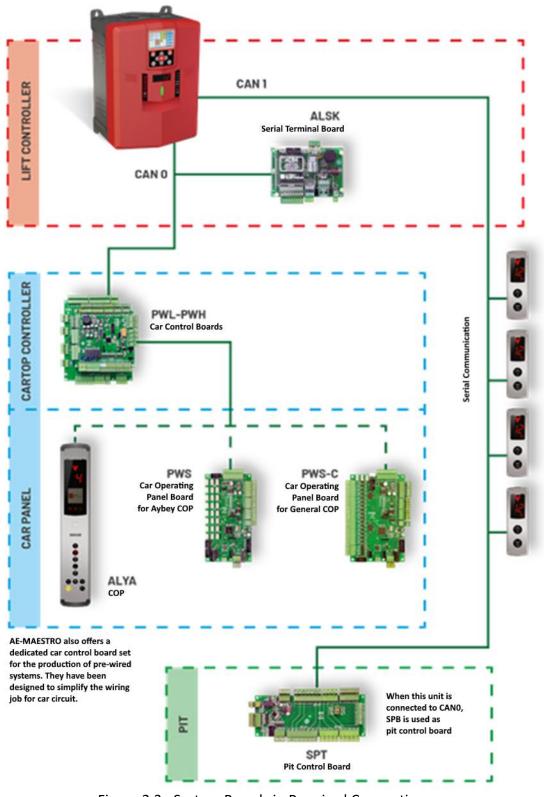
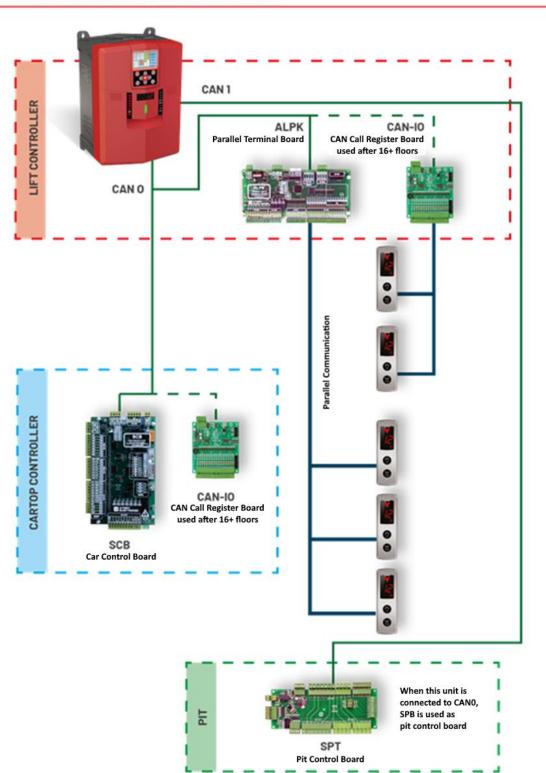
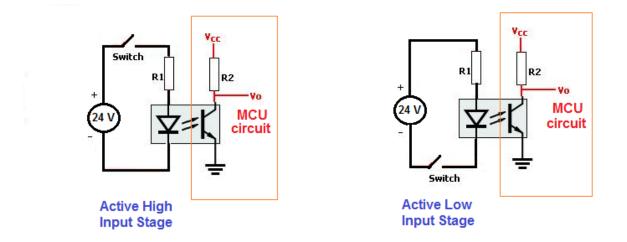



Figure 2.3a System Boards in Prewired Connection

Boards and connections in non-prewired, parallel system is shown in Figure 2.3b. However, the landing units can also be connected in series as in previous figure.



SYSTEM BOARDS IN NON-PREWIRED CONNECTIONS

Figure 2.3b System Boards in Non-Prewired Connection

2.4) INPUT HARDWARE

All inputs except <u>ML1-ML2</u> and <u>safety circuit</u> are active low. It means that an active state from a detector is monitored when this input is connected to the ground reference (OV) of DC power supply. See Figure 2.4a. All inputs are 100% galvanically isolated from the microcontroller circuit since they are connected via optocouplers to this circuit.

Figure 2.4a Inputs Stages

Due to its flexible structure, the input terminals have been distributed onto a number of boards. The locations of these terminals are listed below.

INPUT NO	PLACE / SOCKET	BOARD NAME	TERMINAL NAME
1118	PANEL / TERMINAL	AE-MAESTRO	l1l8
19116	PANEL / TERMINAL	ALSK / ALPK	I9I16
21 24	PANEL / TERMINAL	ALSK (INPS)	21 24
121124	PANEL / TERIVIINAL	ALPK (INPS)	121124
N1N12	CAR / TERMINAL	SCB / PWL	N1N12
N13N16	CAR / TERMINAL	SCB (INPS)	1 4
N12N10	CAR / TERIVIINAL	PWL (INPS)	1114
N17	CAR / TERMINAL	PWS	N17
N18N21	CAR / TERMINAL	PWS (INPS)	1114
Y1Y7	PIT CONTROLLER	SPB/SPT	Y1Y7

Table 2.4a Locations of input terminals

2.5) INPUT FUNCTIONS

There is a number of defined input functions in software. Each input function has a unique function number. Some input terminals are assigned to a specific function as default by the system, such as [ML1], [ML2] and safety line whereas the others are programmable. Any input function can be assigned to any programmable input terminal by using H01-DEFINE INPUTS menu under SYSTEM SETTINGS icon in hand terminal.

INPUT	INPUT	EXPLANATION	DEFINITION	ACTIVE
NO	CODE	EXPLANATION	DEFINITION	STATE
1	869	Car Top Inspection Switch	USER	OFF
2	870	Recall Operation Switch	USER	ON
3	871	Pit Inspection Switch	USER	OFF
4	817	High Speed Limit at bottom	USER	OFF
5	818	High Speed Limit at top	USER	OFF
6	500	Car Inspection Motion Button Down	USER	ON
7	501	Car Inspection Motion Button Up	USER	ON
8	550	Recall Motion Button Down	USER	ON
9	551	Recall Motion Button Up	USER	ON
10	BYP	Bypass Switch	USER	OFF
11	510	Pit Inspection Motion Button Down	USER	ON
12	511	Pit Inspection Motion Button Up	USER	ON
13	KRR	Pit Inspection Reset Switch	USER	TOGGLE
14	MKD	Stopper in down direction	USER	ON
15	MKU	Stopper in up direction	USER	ON
16	804	Overload contact (NO)	USER	ON
17	805	Full Load Contact	USER	ON
18	K20	Door Open Button for Door 1	USER	ON
19	DTS	Door Close Button for Door 1	USER	ON
20	FOT	Photocell Contact for Door 1	USER	ON
21	AL1	Door Open Limit for Door 1	USER	ON
22	KL1	Door Close Limit for Door 1	USER	ON
23	K1C	Obstruction Contact for Door 1	USER	OFF
24	BR1	Brake Contact of the traction machine (Brake 1)	USER	info
25	BR2	Brake Contact of the traction machine (Brake 2)	USER	info
26	SGC	Overspeed Governor Contact (Normally Closed)	USER	info
27	SGO	Overspeed Governor Contact (Normally Open)	USER	info
		Door Motor Temperature		
28	DTP	If the door motor overheats then this input function	USER	OFF
		is activated and the controller prevents any motion.		
29	K22	Door Open Button for Door 2	USER	ON
30	DT2	Door Close Button for Door 2	USER	ON
31	AL2	Door Open Limit for Door 2	USER	ON
32	KL2	Door Close Limit for Door 2	USER	ON
33	K2C	Obstruction Contact for Door 2	USER	OFF
34	FT2	Photocell for Door 2	USER	ON
35	PFK	When activated it means that safety gear has been enabled.	USER	OFF
36	EKS	RESCUE switch If this input is active and FKK input is inactive at start- up, then the system starts in Rescue mode.	USER	ON

Table 2.5a Input Functions

INPUT NO	INPUT CODE	EXPLANATION	DEFINITION	ACTIVE STATE
37	HD	High speed limit in down direction This input is used in lift applications above 1,2 m/s	USER	OFF
38	HU	High speed limit in up direction This input is used in lift applications above 1,2 m/s	USER	OFF
39	MCI	When motor contactor activated, this input must be active.	USER	ON
40	M0	Floor counter input for bi-stable magnetic switches when A05=1.	USER	info
41 42	FR1 FR2	Fire Input Switch An active signal at this input switches the system to fire mode. See chapter 9.	USER	Refer to [B40]
43	FRM	Fireman Switch at the ground floor.	USER	ON
44	FRC	Fireman Switch in car panel.	USER	ON
45	DSB	<u>Disable Switch</u> When this switch is active, any lift motion is inhibited. However, relevelling will be carried out when needed.	USER	ON
46	VP1	VIP input 1 When an active signal is present at this input then the lift moves to the floor specified in parameter [B23] 1st VIP FLOOR	USER	ON
47	VP2	<u>VIP input 2</u> When an active signal is present at this input then the lift moves to the floor specified in parameter [B24] 2nd VIP FLOOR	USER	ON
48	VP3	VIP input 3 When an active signal is present at this input then the lift moves to the floor specified in parameter [B25] 3th VIP FLOOR	USER	ON
49	THR	Machine Room temperature control input. This input is used to get information about the machine room temperature. When the machine room temperature is outside the defined temperature range defined in lift standard then this input should be ON by an external temperature measuring device.	USER	OFF
50	LDB	Loading Button This input function is used to hold automatic door open for a long-period of time during loading. Holding time is determined by parameter [T39] LOADING PERIOD. Any door close request except DTS /DT2 will be ignored during this period.	USER	ON

INPUT NO	INPUT CODE	EXPLANATION	DEFINITION	ACTIVE STATE
51	WTM	Liftman Switch When activated hall calls are inhibited.	USER	ON
52	UCR	This input can be used to clear a raised UCM ERROR. If there is an active UCM error present then changing the state of this input (toggle switch), when the lift is in inspection mode and resting, clears the error.	USER	TOGGLE
53	917	Bottom Level Limit Switch This input function operates only when [A05<4] and [A17=1]. When there are more than one floor after 817 switch downwards then the bottom floor is informed to the controller by an open 917 input terminal.	USER	OFF
54	918	Top Level Limit Switch This input function operates only when [A05<4] and [A17=1]. When there is more than one floor after 818 switches upwards then the top floor is informed to the controller by an open 918 input terminal.	USER	OFF
55	DIK	Door inspection key input This input is used to sense opening the shaft door manually. See section 11.2.	USER	OFF
56	CAL	Car call input delay If this input is ON then any pressed car button activates buzzer.	USER	ON
57	802	Minimum Load Contact If there are no load or person inside the cabin then this input should be ON when used.	USER	ON
58	PNB	Panic Button When this input is ON then the lift travels immediately to the panic floor defined in [B28].	USER	ON
59	DOA	Door Selection Switch for Door 1 This input function can be used when [B11]-TWO DOORS SELECTION = 1 (TERMINAL INPUT). If there are two car doors, which can be opened at the same floor and only door 1 is intended to be opened there then this function can activate. In this case any door open command at this floor will open only door 1. Door 2 will always stay closed even after door open commands.	USER	ON

INPUT NO	INPUT CODE	EXPLANATION	DEFINITION	ACTIVE STATE
60	DOB	Door Selection Switch for Door 2 This input function can be used when [B11]-TWO DOORS SELECTION = 1 (TERMINAL INPUT). If there are two car doors, which can be opened at the same floor and only door 2 is intended to be opened there then this function is activated. In this case any door open command at this floor will open only door 2. Door 1 will always stay closed even after door open commands.	USER	ON
61	DPM	Earthquake Alarm Input When this input function is active (OFF), then the controller enters earthquake mode. The lift will go to the nearest floor when it is in motion. When the lift is in rest then any motion request is prohibited. It has the same function as DEP input but with reverse input polarity.	USER	OFF
62	SIM	Simulation mode input See Section 12.2.	USER	ON
63	FE1	Photocell Error- door 1 This input should be connected to the error output of the photocell unit employed for the door 1.	USER	ON
64	FE2	Photocell Error- door 2 This input should be connected to the error output of the photocell unit employed for the door 2.	USER	ON
65	DRB	Pit entrance door reset signal See section 11.2.	USER	ON
66	ARN	This input is active when AMI-device has been retracted. See section 11.1.	USER	ON
67	ARD	This input is active when AMI-device is extended. See section 11.1.	USER	ON
68	PER	<u>Emergency Phone Error.</u> An error in emergency phone activates this input to acknowledge the system.	USER	ON
69	FI1	Special Input 1 FREE OUTPUT-1, in programmable outputs, follows this input. If FI1 is ON then FREE OUTPUT-1 is ON and vice versa. The function of this input is only to transfer one digital output anywhere in the shaft to any other place in the shaft by using intelligent CAN boards in the system.	USER	ON
70	FI2	<u>Special Input 2</u> . It manages FREE OUTPUT-2 in the same way as FI1.	USER	ON
71	FI3	Special Input 3. It manages FREE OUTPUT-2 in the same way as FI1.	USER	ON

INPUT NO	INPUT CODE	EXPLANATION	DEFINITION	ACTIVE STATE
72	CDC	If this input has been activated then all pending car calls are cleared.	USER	ON
73	CDH	If this input has been activated then all pending hall calls are cleared.	USER	ON
74	CDA	If this input has been activated then all pending calls (car + halls) are cleared.	USER	ON
75	PAS	If this input is active, then access control system in COP is bypassed.	USER	ON
76 77	FR3 FR4	Fire 3 and Fire 4 detectors An active at this input switches system to fire mode. See section 9.2.	USER	Refer to [B40]
78	814	Overload contact (NC). It is inverse function of 804. Overload is active if this input is OFF.	USER	OFF
79	MDK	MDK CHECKING It checks if KDK contactors are working synchronously. Active state means a faulty operation and error 4 is evoked.	USER	ON
80	TKF	CHECKING OF TKF CONTACTORS See section 12.1.	USER	ON
81	MRC	<u>MANUEL RESCUE</u> If the car is moved only by opening brakes manually then MRC input should be activated to monitor car speed on the led displays on the device. See 8.2.2.	USER	ON
82	LS1	LOAD SENSOR %25 LS1 is used in pre-torque application when [S19=4]. See section 5.5.	USER	ON
83	LS2	LOAD SENSOR %50 LS2 is used in pre-torque application when [S19=4]. See section 5.5.	USER	ON
84	LS3	LOAD SENSOR %75 LS3 is used in pre-torque application when [S19=4]. See section 5.5.	USER	ON
85	DEP	EARTHQUAKE NO-CONTACT When this input function is active (ON), then the controller enters earthquake mode. The lift will go to the nearest floor when it is in motion. When the lift is in rest then any motion request is prohibited. It has the same function as DPM input but with reverse input polarity.	USER	ON
86	LGT	<u>CAR LIGHT OFF</u> This input is used to detect the illumination inside the cabin. If the car becomes dark while busy signal is on, then the controller creates error 99, clears calls and further motion is inhibited.	USER	OFF

2.6) OUTPUT HARDWARE

All contactor and programmable outputs are 100% galvanically isolated from the microcontroller circuit by means of optocouplers as in Figure 2.6a.

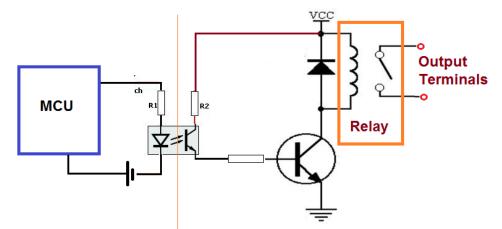


Figure 2.6a Output Circuit

2.6.1) LOCATION AND SPECIFICATION OF OUTPUTS

AE-MAESTRO Series has 22 programmable outputs. The positions, types and electrical specifications of the outputs are given below.

NO	CODE	LOCATION	CONTACT V/I	CONTACT TYPE
1	S1	ICM	220V/10A	NO
2	S2	ICM	220V/10A	NO
3	S3	ICM	220V/10A	NO
4	S4	ICM	220V/5A	NO
5	S5	ICM	220V/5A	NO
6	S6	ICM	220V/5A	NO
7	V1	SPB/SPT	220V/5A	NO
8	V2	SPB/SPT	220V/5A	NO
7	R1	SCB/PWL	220V/5A	NO
8	R2	SCB/PWL	220V/5A	NO
9	R3	SCB/PWL	220V/5A	NO
10	R4	SCB	220V/5A	NO
11	R5	SCB	220V/5A	NO
12	R6	PWL (OUT)	220V/5A	NO
13	R7	PWL (OUT)	220V/5A	NO
14	R8	PWS	220V/5A	NO
15	E1	SCB (SDE/EOR)	220V/5A	NO
16	E2	SCB (SDE/EOR)	220V/5A	NO
17	E3	SCB (SDE/EOR)	220V/5A	NO
18	E4	SCB (SDE/EOR)	220V/5A	NO
19	E5	SCB (SDE/EOR)	220V/5A	NO
20	E6	SCB (SDE/EOR)	220V/5A	NO
21	E7	SCB (SDE/EOR)	220V/5A	NO
22	E8	SCB (SDE/EOR)	220V/5A	NO

Table 2.6a Locations of the Output Terminals

2.6.2) OUTPUT FUNCTIONS

- There are more than a hundred built-in output functions in software.
- Each output function can be assigned to any output terminal.
- One output function can be assigned to more than one output terminal

- When the condition of the output function is realized then this output is set, namely its contact will be closed.

Any output function can be assigned to any programmable input terminal by using **H02-DEFINE OUTPUTS** menu under **SYSTEM SETTINGS** icon in hand terminal.

The output functions in are listed below.

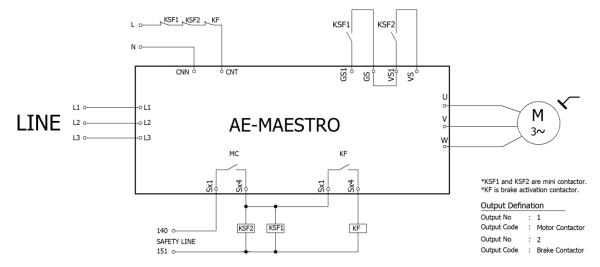
CODE	OUTPUT FUNCTION	EXPLANATION
1		Main contactor output. MC connects the output of ILC to
1	MC CONTACTOR	the motor.
2	BRAKE CONTACTOR	Brake contactor output. Brake contactor energizes the coils
Z	BRAKE CONTACTOR	of the motor brake.
3	INSPECTION	System is in inspection mode.
4	NORMAL OPERATION	System is in normal mode.
5	FAULT STATE	There is an error in operation.
6	NO ERROR	There is no errors in the system.
7	START	Start of the motion. There is a motion request. System is
/	START	preparing to start motion. But there is no motion yet.
8	IN MOTION	The car is moving
9	NO MOTION	The car is resting.
10	140 IS ON	140 Terminal is ON
11	140 IS OFF	140 Terminal is OFF.
12	AT DOOR ZONE	The car is at door zone.
13	RESTING IN DOOR	The car resting at door zone.
	ZONE	
14	DIRECTION UP	Motion Direction is up
15	DIRECTION DOWN	Motion Direction is down
16	BUSY ON	System is busy (cabin light is on)
17	NOT BUSY	System is not busy (cabin light is off)
18	120 OFF	120 (stop circuit) is closed.
19	120 ON	120 (stop circuit) is open.
20	PARK TIME	The controller is waiting for park period.
21	LEVELLING	The car is in levelling motion.
22	FIRE ALARM	Fire signal is active. (FR1or FR2)
23	DOWN IN FIRE	Lift is moving downwards in fire
24	UP IN FIRE	Lift is moving upwards in fire
25	FIRE DOOR ALARM	Fire phase is 1 or higher in EN81-72 lift.
26	RETIRING CAM	Retiring cam output
27	OUT OF SERVICE	Lift is not in service.

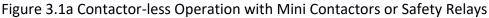
Table 2.6b Output Functions

CODE	OUTPUT FUNCTION	EXPLANATION
28	OVERLOAD	Overload signal is active (804 input is active)
29	MAX START COUNTER	Number of starts exceeded maximum number of starts.
3035	B0B5	Binary code outputs. Bits B0B5.
36	POWER LINE OK	Power line is OK.
37	POWER NOT PRESENT	No voltage in power line inputs.
38	IN RESCUE MODE	The lift is in rescue mode.
39	NOT RESCUE MODE	The lift is not in rescue mode.
4045	M0M5	Gray code outputs. Bits M0M5.
46	VIP TRAVEL – PRIORITY TRAVEL	System is in VIP or priority mode.
47	NEXT DIRECTION UP	Next direction arrow up.
48	NEXT DIRECTION DOWN	Next direction arrow down.
49	LIFTMAN	Liftman
50	FAN	Fan output.
51	HIGH TEMPERATURE	This output is activated if temperature is higher than the value stored in parameter [B29].
52	LOADING BUTTON	Loading period [T39] is activated by LDB input.
53	MC CONTACTOR IS	Motor contactor is not active.
54	NO CALLS	There is (are) registered call(s).
		When the photocell of the first door is blocked for a longer
55	SLOW CLOSE -1	period than [C34] then the door starts closing in slow
		motion. This output is for slow closing of door-1.
		When the photocell of the second door is blocked for a
56	SLOW CLOSE -2	longer period than [C35] then the door starts closing in
		slow motion. This output is for slow closing of door-2.
57	SPEED GOVERNOR COIL	Output for speed governor coil.
58	CLOSE 1 st DOOR	Door close output for door 1.
59	OPEN 1 st DOOR	Door open output for door 1.
60	CLOSE 2 nd DOOR	Door close output for door 2.
61	OPEN 2 nd DOOR	Door open output for door 2.
62	BYPASS WARNING	When the lift is in bypass mode this output is active.
63	SYSTEM IS BLOCKED	If the lift is blocked or put into out of service mode due to an error then this output is active.
64	FIRE NO-ENTRANCE	No-Entrance output
65	GOVERNOR CONTROL	Governor Output symbol
66	AMI-100 COIL	AMI-100 device coil output (for EN81-21)
67	CAR INSPECTION	In inspection mode due to car inspection switch
68	PIT INSPECTION	In inspection mode due to pit inspection switch
<u> </u>		Inspection switches of car and pit are both active
69	INSPECTION CAR+PIT	simultaneously.
70	DOOR RESET COIL	Door reset device coil output (for EN81-21)
71	FREE OUTPUT 1	It's active when free input 1 (69) is active

CODE	OUTPUT FUNCTION	EXPLANATION
72	FREE OUTPUT 2	It's active when free input 2 (70) is active
73	FREE OUTPUT 3	It's active when free input 3 (71) is active
		It will be active in normal travel and when the doors are
74	ALARM FILTER	open at door zone. This output is used to prevent
		unnecessary use of EN81-28 emergency phone.
75	TKF CONTACTOR COIL	TKF contactor coil is driven. See section 12.1.
76	MAX.DIRECTION	Max direction change counter has exceeded the value in
CHANGE		H12.
77	GONG	This output is ON while the car has just reached the floor
//	GONG	level in normal operation.
		This output is ON when ALARM button on car operating
70		panel is pressed.
78	ALARM	This function works only with serial ALYA and BELLA panels
		as well as in systems with car board PWSC.

CHAPTER 3 – BASIC APPLICATIONS


3.1) MOTOR CONNECTION CIRCUIT


3.1.1) Contactor-less Operation (STO)

AE-MAESTRO can be connected without contactors directly to the motor windings (Safe Torque Off-STO). In this case safety relays or mini contactors are used to enable the device. If contactorless application is selected, then the STO parameter should be set to 1. Select [A26=1]. It should be noted that only power contactors are not present in STO application, but brake contactors remain in the controller.

3.1.1.1) STO with Mini Contactors or Safety Relays

First way is using mini contactors complying the standard EN 60947-5-1:2004 or safety relay complying the standard EN50205 in enable circuit. Related circuit is shown in Figure 3.1a.

3.1.1.2) STO with SER Board

Second way is using SER board. It includes safety relays and related circuit in it.

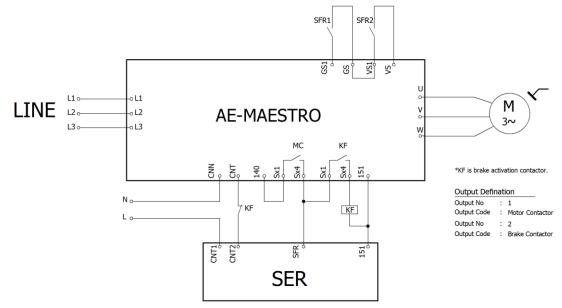


Figure 3.1b Contactor-less Operation with SER Board

3.1.2) Connecting Motor Through Power Contactors

The classical drive motor connections are shown in Figure 3.1c. You can use this method by disabling STO function. K1 and K2 are power contactors and should be rated to the motor current. Adjust parameter [A26=0].

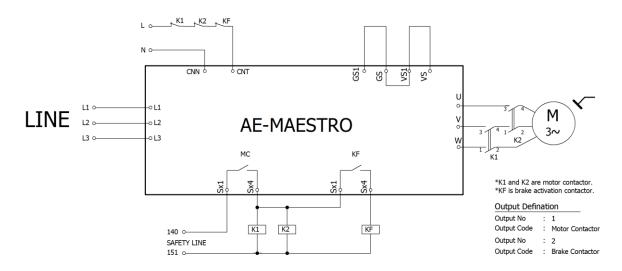


Figure 3.1c Connecting Motor Through Power Contactors

3.2) COLLECTING CAR POSITION INFORMATION

ILC can use encoder or magnetic switches to collect car position information. When encoder method is selected then distance dependent travel system is automatically activated. In this case all speed switching points are calculated by the device. Nevertheless, ILC supports simple switching method by magnetic switches when there is no encoder used in the system.

In all methods 817 and 818 switches are employed to check shaft limits. These are bi-stable magnetic or mechanical switches. They must be open at top (818) and bottom (817) limits paths and closed between these limits. These switches are used as reference point for top and bottom floors in all methods except absolute encoder. Secondly, they force the lift slow down at the shaft limits if the car position system fails. Furthermore, the consistency of the car position data is always checked at these limit points.

3.2.1) Magnetic Switches as Floor Selector

If magnetic switches are use as floor selector,

- Counter method is used and a reset travel is required after each powering up.
- Distance based operation is **not** active.

3.2.1.1) Counter Mono-stable Switch

In this mode, ML1, ML2, MKD and MKU normally open (KPM206) magnet switches are used and releveling is allowed. Select [A05=0].

3.2.1.2) Counter Bi-Stable Switch

In this mode M0 and MK Bi-stable magnet switches (KPM205) are used and releveling is **not** allowed. Select [A05=1].

3.2.2) Encoders as Floor Selector

When encoders are used to collect car position data you will get mm level accuracy and distance dependent travel facility will be active. You should first complete a learn travel as explained in section 5.1.1 successfully. Then you should adjust floor levels one by one accurately before switching to normal mode as explained in section 5.1.2.

3.2.2.1) Motor Encoder

In this mode a reset travel is required after each powering up. It uses motor encoder which is used for speed feedback. To select this method, select [A05=2]. No additional hardware is required. This option is not available in asynchronous open loop motor, where [A03=0].

- a) With Releveling: In this mode, ML1, ML2, MKD and MKU normally open (KPM206) magnet switches are used. To allow releveling, select [A11=0].
- **b**) **Without Releveling**: In this mode, only ML1 and ML2 normally open (KPM206) magnet switches are used and releveling is **not** allowed.

3.2.2.2) Shaft Encoder

This method uses a standalone shaft encoder fixed to the car with a rope. The encoder turns when the car moves. You should plug an **ENC** encoder interface board into the device. In this method relevelling is allowed and select to use encoder pulses to start and stop releveling motion. Select [A05=3] for shaft encoder and set [A11=1], if releveling is requested. In this mode a reset travel is required after each powering up.

3.2.2.3) ABSOLUTE ENCODER

The best way to get car position information is using an absolute encoder. An absolute encoder always gives the exact car position information to the controller. An absolute encoder is connected to the device via CAN bus. It gives information about car position in mm accuracy. This information helps the controller in managing speed paths, especially in slowing down and stopping. To select this method, select [A05= 4] and set [A11=1], if releveling is requested. In this mode no resetting travel is needed after a start-up

CHAPTER 4 – PARAMETERS

All information about lift and control system settings and timings are stored in system parameters. These parameters are classified into several groups to make it easy for users. These groups are:

P01-GROUP A PARAMETERS: These parameters are denoted with a prefix letter 'A' as Axx. Main parameters define the type and basic functions of the lift. They can be modified only when the lift is resting.

P02- GROUP B PARAMETERS: These parameters are denoted with a prefix letter 'B' as Bxx. Auxiliary parameters define most of the functions of the lift. They can be modified at any time.

P03-TIMER PARAMETERS: These parameters are denoted with a prefix letter 'C' as Cxx. Timer parameters store all of the user definable timer settings. They can be modified at any time.

P04-SPEED PARAMETERS: This section contains parameters for speed adjustments. They can be modified only when the lift is resting.

P05-CONTROL PARAMETERS: Control parameters are mainly the parameters which are used to control the behaviour of the motor. They can be modified only when the lift is resting.

P06-MOTOR PARAMETERS: This section has parameters on motor and encoder specifications. They can be modified only when the lift is resting.

P07-HARDWARE PARAMETERS: These parameters store the settings for the hardware of the device.

P08-ACCESS CONTROL: Access control system is explained in section 5.3.

These parameters can be edited by pressing on the **PARAMETERS** icon in the main menu.

GROUP A PAR **P02 GROUP B PARAMETERS** > P03 TIMER PARAMETERS > P04 SPEED PARAMETERS **P05 CONTROL PARAMETERS P06 MOTOR PARAMETERS P07 HARDWARE PARAMETERS P08 ACCESS CONTROL P09 HIDDEN PARAMETERS**

4.1) P01-MAIN PARAMETERS

The lift must be resting to do any modification on main parameters.

[A01] NUMBER OF STOPS

264	This parameter stores the number of stops of the lift.
-----	--

[A02] COMMAND SYSTEM

	Simple Push Button
0	Car and hall calls are processed together. Collective operation is not allowed. Only
	one call is processed at a time. This system is usually used in freight elevators
	Simple Collective
1	Car and hall calls are processed together. Collective operation is allowed but there
	is no difference between hall and car calls. No group operation is allowed.
	Down Collective
	Car and hall call buttons are processed separately. Car calls are collective in both
2	directions where hall calls are collective only in downwards motion. This
	configuration is useful in residential buildings where the main entrance is in the
	base floor. Group operation is allowed.
	Up Collective
	Car and hall call buttons are processed separately. Car calls are collective in both
3	directions where hall calls are collective only in upwards motion. This configuration
	is useful in residential buildings where the main entrance is in top floor. Group
	operation is allowed.
	Full Collective
4	Car, up and down hall buttons are processed separately. This is the most advanced
	command system and the best selection for group operations.
1	

[A03] MOTOR TYPE

This parameter should be set according to the motor type of the lift.

Asynchronous Open Loop
Asynchronous motor in open loop (without encoder)
Asynchronous Close Loop
Asynchronous motor in closed loop (with encoder)
Synchronous
Gearless Machine with synchronous motor (with absolute encoder)

[A04] DOOR TYPE

1	Wing Door The lift has semi-automatic landing doors.
2	Automatic Door The lift has full-automatic landing doors.

[A05] FLOOR SELECTOR

See section 5.1 for a detailed explanation about floor selectors before installation.

0	Counter Mono-stable Switch
	Monostable magnet switches are used for car position detection.
1	Counter Bi-Stable Switch
1	Bi-stable magnet switches are used for car position detection.
2	Motor Encoder
Z	Motor encoder is used for car position detection.
3	Shaft Encoder
5	Shaft encoder is used for car position detection.
4	Absolute Encoder 2M
4	Absolute encoder LIMAX 2M is used for car position detection
5	Absolute Encoder LIMAX3CP
	Absolute encoder LIMAX3CP is used for car position detection.

[A06] DOOR BRIDGING

0	Not Active
	Neither relevelling nor early door opening are used.
1	<u>Re-levelling</u>
	Re-levelling is active. Early door opening is not used.
2	Early Door Open
2	Relevelling is passive. Early door opening is active.
3	Relevel + Early Door Open
	Both relevelling and early door opening are active.

[A07] GROUP NUMBER

0	Simplex The lift works as simplex.
0.8	<u>Group Number</u> The lift works in a group of lifts. A07 specifies its group number.

[A08] NUMBER OF DOORS IN CABIN

1	<u>1 Door</u> There is only one car door.
2	<u>2 Doors</u> There are two car doors.

[A09] COMMUNICATION

0	<u>Car Serial</u>
	The communication between car and controller is serial.
	The landing calls and signals are driven as parallel by ALPK board.
1	Full Serial
	The communication between car, landing panels and controller is full serial.

[A10] LIFT STANDARD

The device changes behaviour especially after errors and in starting motion depending on the lift standard selected in this parameter. Wiring, parameters and peripheral devices must be in conformity with the standard selected here, otherwise you will face with errors or blocking states.

0	EN81-1 The device works in conformity with EN81-1 standard.
1	EN81-1+A3 The device works in conformity with EN81-1+A3 standard.
2	EN81-20/50 The device works in conformity with EN20/50 standard.

[A11] LEVEL DETECTOR

Level detector should be determined if releveling is selected ([A06=1] or [A06=3]).

0	MKU/MKD Levelling motion is started by considering the states of MKU and MKD switches. When the car is resting at the floor level MKD and MKU are both closed (ON). If the car moves in any direction, then one of these switches will be open (OFF). This will initiate a releveling motion. This option should be be used if motor encoder is used as car position detector [A05=2].
1	ENCODER Levelling motion is initiated regarding to the current car position. This option should be selected when shaft encoder or absolute encoder is used [A05>2].

[A12] ENTRANCE FLOOR

06	This parameter stores the number of floor(s) below entrance floor if they exist.
----	--

[A13] LIFT/HOMELIFT

0	Normal Lift
	The lift serves as a normal lift in conformity to the standard EN81-20/50.
1	<u>Homelift</u> The lift performs as a homelift . In this selection the traffic system is simple push button. When any travel is started and by using car buttons then the motion continues only if the car call button is kept pressed along the travel. If the car call button is released during travel, then the motion is stopped immediately. However, there is no such restriction for hall calls. The lift travels to any hall call as in a normal lift.

[A14] FIRE STANDARD

This parameter determines the behaviour of the lift in case of fire. See section chapter 9.

0	EN81-73
1	EN81-72 Fire fighter Lift
2	EN81-72 Fire fighter Lift with car fireman switch
3	Reserved
4	EN81-73 with blocking after operation

[A15] INSTALLATION MODE

This parameter is to facilitate the first installation of the system. System must be inspection mode due to inspection box or RECALL switches to activate this utility. Some of the inputs are inhibited when this utility is active. When the controller returns to the normal mode or system is switched on then this parameter is switched to passive [A15=0] automatically.

0	Passive Sustance used a second second
	System works in normal mode.
1	<u>Active</u> If the system is in the inspection mode due to RECALL or car top switch, then the controller does not respond 871, DIK, BYP, KRR, DPM, SGO, KL1, KL2, K1C and K2C inputs. Pit inspection, UCM errors and bypass procedures are skipped.

[A16] UCM CONTROLLER

This parameter controls the presence of the UCM control system. You should care with the wiring and correct setting of the parameters related UCM devices. UCM system is passive if [A10=0].

0	Not Active
	No Unintended Car Motion detection is carried out.
1	Active
	Unintended Car Motion system is active.

[A17] RESETTING SWITCH

This parameter defines the presence of resetting switches in place of 817 and 818 if there is more than one floor in the compulsory slow down region.

0	Not Activated 817 and 818 are used as resetting switches for all floor selector types, where [A05] is less than 4.
1	Activated The system uses the input functions 917 for bottom resetting switch and 918 for top resetting switch. 817 and 818 continue to serve as speed limit switches.

[A18] PIT CONTROLLER BOARD SPB/SPT

This parameter controls the presence of the pit board.

0	NOT USED There is no SPT or SPB board in shaft-pit.
1	PRESENT SPT or SPB boards is used in shaft pit.

[A19] SIMULATOR MODE

Simulator mode can be used to run the integrated device for test and education purpose with a free running motor or without motor. **Do not activate [A19>0] this function in a lift installed in the shaft**. Read section 12.2 for a detailed explanation.

0	Not Active
0	Simulation mode is not active.
1	Simulator Motor with free running Motor
2	Simulator Without Motor
3	Simulator Only Device

[A20] DOOR ZONE

150 600	This parameter stores the door zone length. It defines the region where the doors	
150000	are allowed to be opened.	

[A21] RELEVEL START mm

1530	This parameter is active if [A11=1].
	Releveling starting point measured from the floor level. The controller initiates
	releveling motion when the lift moves beyond the distance defined in this
	parameter.

[A22] RELEVEL STOP mm

	This parameter is active if [A11=1].
315	Releveling stopping point measured from the floor level. The controller terminates
515	releveling motion when the lift moves beyond the distance defined in this
	parameter.

[A23] EMERGENCY RESCUE OPERATION ALLOWED

0	Passive Emergency rescue operation is inhibited.
1	Active When the line fails the device enters into rescue mode and initiates the rescue operation.

[A24] EKS VOLTAGE

This parameter stores the motor voltage supplied to the device in case of rescue operation.

0	220V AC
1	380V AC
2	110V AC
3	60V DC
4	48V DC

[A25] HIGH SPEED SWITCHES

This parameter stores the information the presence of HU and HD switches for high speed applications.

0	Passive
1	Active

[A26] STO-NO CONTACTORS

This parameter must be set in accordance with usage of power contactors.

0	Passive STO functions are not used. The device is connected to the motor through power contactors in classical way.
1	Active STO functions are used. The device is connected to the motor without any contactors.

[A27] SGD IN GEARLESS MACHINE

0	Not Used SGD board is not used in systems with gearless machines.
1	Present SGD board is employed for UCM purposes in systems with gearless machines.

[A28] 817 PATH

	This parameter defines the forced slow down path downwards when floor selector
1505000	is absolute encoder [A05=4,5]. The value should be the distance between 817 level
	and the base floor.

[A29] 818 PATH

	This parameter defines the forced slow down path upwards when floor selector is
1505000	absolute encoder [A05=4,5]. The value should be the distance between 818 level
	and the top floor.

4.2) P02-B PARAMETERS

[B01] AFTER LOCK FAULT

0	Continue
	The system continues its operation after any lock fault.
	Block at Repeated
1	The system will be blocked after a certain number of repeated lock faults. This
	number is the value defined in parameter [B05].
2	Clear Registers
	All call registers are cleared after any lock fault.
3	Block + Try Again
	The system will be blocked after a certain number of repeated lock faults. This
	number is the value set in parameter [B05]. However, the system returns to its
	normal operation automatically after 5 minutes.

[B02] SKIP SIMPLE ERRORS

0	Stop
0	The system stops after all errors.
	Continue
1	The system continues its operation after some simple errors, which are not related
	to the safety circuit or car motion.

[B03] ERROR BLOCKING

0	The system will be blocked after error 45, SDB bridge error.
1	The system will not be blocked after error 45, SDB bridge error

[B04] UCM ERROR BLOCK

This parameter determines whether the system is going to be blocked after the occurrence of any UCM related errors (Errors with the error number 64, 68, 69 and 72).

0	CAN BE BLOCKED
	UCM Errors will block the lift.
	NO BLOCKING
	UCM Errors will not block the lift.
1	Warning: This option can be used only for installation, repair and maintenance
	purposes. This parameter cannot be set to 0 for normal operation according to the
	current lift standards.

[B05] MAXIMUM ERROR REPEAT

	When any error in the list given below occurs and repeated consecutively as many
	times as the number defined in this parameter then the system will be blocked.
350	These errors are:
	6, 7, 12, 13, 21, 23, 27, 28, 30, 38, 40, 41, 42, 43, 44, 61, 62, 63, 65, 66, 67, 70, 71,
	73, 74, 75, 82, 88, 89, 90, 91, 92, 116, 119, 120, 121

[B06] PARK DEFINITION

This parameter determines whether the park floor is present or not and its behaviour at the park floor.

0	No Park Floor
	No park floor is defined.
1	Park Floor Door Close
	The car will go to the parking floor set in parameter [B07] when no calls have been
	received in a specified time period [T02] after the car light goes off. The car will wait
	at parking floor [B07] with <u>closed</u> doors.
	Park Floor Door Open
	The car will go to the parking floor set in parameter [B07] when no calls have been
2	received in a specified time period [T02] after the car light goes off. The car will wait
	at parking floor [B07] floor with open doors.
	Warning: This option is not in conformity with EN81-20/50 as well as EN81-1.

[B07] PARK FLOOR

063	This parameter defines the parking floor where the car will go and wait if parking
063	has been activated.

[B08] HALL CALLS INHIBIT

You can inhibit hall calls by using this parameter.

0	Hall Calls Allowed
1	Hall Calls Inhibited

[B09] MAXIMUM CABIN CALLS

3 63	This parameter sets the maximum number of accepted car calls at any time. Any
505	new car calls will not be executed if there are already [B09] car calls.

[B10] DOORS IN STOP BREAK

0	<u>Doors Passive</u> If stop circuit (120) is off at floor level then door signals are passive, neither open nor close commands are applied to the doors.
1	<u>Doors Active</u> Door signals are active after a stop break.

[B11] TWO DOORS SELECTION

0	TOGETHER ACTING
	When there are two car doors then the opening floors for each door is specified in
	Floor Parameters section (K1 and K2). Each door opens according to the settings in
	floor parameters.
	SEPARATELY ACTING
	The door to be opened at each floor is determined not by the settings in floor
1	parameters but according to the states of the programmable inputs, DOA and DOB.
	Car door A is allowed to open if DOA input is active. Similarly, Car door B is active if
	DOB input is active. DOA and DOB cannot be active (ON) at any time simultaneously.

[B12] MISSING FLOOR (GROUP LIFT)

	This parameter is used only for group operations if the base floors of the group
010	lifts are not at the same level. Otherwise, this parameter must be left as zero.
010	The number of floors above the other lifts in the group should be entered here as
	data. Read Section 5.6.

[B13] DOOR LIMIT SWITCHES

0	Normally Open AL1, AL2, KL1, KL2 inputs will be active when their terminals connected to 1000.
1	Normally Closed AL1, AL2, KL1, KL2 inputs will be active when their terminals are left open.

[B14] FIRE FLOOR 1

0 62	When the input terminal assigned to the input function FR1 is activated then the
063	car immediately moves to the floor defined in this parameter.

[B15] FIRE FLOOR 2

063	When the input terminal assigned to the input function FR2 is activated then the
005	car immediately moves to the floor defined in this parameter.

[B16] PTC CONTROL

0	PTC Control Off
0	Motor thermistor control is not active.
1	PTC Control On
L	Motor thermistor control is active.

[B17] PHOTOCELL BYPASS CONTROL

0	Inactive
0	No photocell bypass operation is carried out.
	ACTIVE-1 / No Door Close Command
1	Photocell bypass operation is carried out. Only SLOW CLOSE output function is
L	activated for door operator to close the door in photocell bypass operation. See also
	timer parameters [T34] and [T35].
	ACTIVE-2 / with Door Close Command
2	Photocell bypass operation is carried out. Door close command is sent together
Z	with SLOW CLOSE output function to door operator to close the door in photocell
	bypass operation. See also timer parameters [T34] and [T35].

[B18] GONG CONTROL

This parameter defines how the arrival gong is executed.

0	Gong at Stop
0	Gong signal is activated when the lift stops.
1	Gong at Slow Speed
1 I	Gong signal is activated when the lift starts to slow down.
2	No Car Gong
Z	There is no arrival gong.

[B19] MK DELAY

	This parameter is used when floor selector is not encoder [A05<2]. It defines the
	delay in stopping after the stop magnet switch has been read by the system in
050	normal operation. One unit in this parameter corresponds to a time delay of 10
	msec. Setting to 0 disables this function. Max. value 50 corresponds to 0,5 sec.
	delay.

[B20] ERS MK DELAY

	It defines the delay in stopping after the stop magnet switch has been read by the
050	system in rescue mode. One unit in this parameter corresponds to a time delay of
050	10 msec. Parameter unit is 10 msec. Setting to 0 disables this function. Maximum
	value of 120 corresponds to 1,2 sec. delay.

[B21] ID CONTROL

This parameter defines how the ID control system will function. In order to activate ID control system this parameter should be nonzero. ID control system is explained in detail in section 5.3. This parameter must be 0 during operation of **priority control**. However, before starting priority operation control define [B21=2] to introduce the keys to the system. Once all keys have been introduced then define [B21=0] to start priority control operation.

0	Not Used
0	ID control system is inactive. No ID cards can be read by the system.
1	<u>Cabin</u>
L	ID control system is active. ID keys can be read only in cabin.
2	Cabin + Controller
Ζ	ID control system is active. ID keys can be read in cabin and in controller.
3	Cabin+Controller+PC
5	ID control system is active. ID keys can be read in cabin, in the controller.
	PASSWORD +PAS Input
4	Calls are confirmed by PASSWORD. If correct password is given PAS input is
	activated and call is accepted.

[B22] VIP CONTROL

0	<u>Not Active</u> VIP control system is not active.
1	<u>Active</u> VIP control system is active

[B23] 1st VIP FLOOR

VP1 is selected and VP2 and VP2 are ignored.
--

[B24] 2nd VIP FLOOR

	When the input terminal assigned to the VP2 input function is activated then the
063	lift immediately moves to the floor set in this parameter. VP1 has highest priority
063	and VP3 the lowest. If VP2 and VP3 are both active then VP2 is selected and VP3 is
	ignored. And when VP1 is active V2P is ignored.

[B25] 3th VIP FLOOR

	When the input terminal assigned to the VP3 input function is activated then the
063	lift immediately moves to the floor set in this parameter. VP3 has the lowest
	priority. Therefore, if VP2 or VP1 are active then VP3 is ignored.

[B26] WAIT DOOR OPEN

This parameter determines how the doors behave at floor level while resting.

0	Wait Closed Door
	Car waits with closed doors at floor level.
1	Wait Open Door
	Car waits with open doors at floor level.
	Warning: This option is not in conformity with EN81-20/50 as well as EN81-1.

[B27] MR TEMPERATURE

This parameter determines how the machine room temperature information is collected.

0	No Temp. Control
	Machine room temperature will not be carried out.
	THR Input
	An external temperature detector is used in processing machine room temperature.
1	Any active state (ON) in the input terminal assigned to the function THR indicates
	that the temperature is out of the allowed temperature limits for machine room
	and therefore any motion is prohibited.

[B28] PANIC FLOOR

0 63	When panic input [PNB] has been activated then the lift cancels current calls and
	travels to the floor defined in this parameter.

[B29] AMI-100 DEVICE

This parameter defines the AMI-100 device for EN81-21 applications. See section 11.1 for the application of AMI-100 device.

see section 11.1 for the upplication of 7 km 100 device.	
0	Not Used
1	Present AMI-100 device is used in low pit short headroom applications.

[B30] CAR DISPLAY OUTPUT

This parameter defines how the digital outputs in car controller SCB board are driven.

0	0	7 Segment Display
	0	Digital outputs are 7 segment display data.
		Grey Code Output
	1	Digital display outputs on SCB board give Grey Code output where the digit G
	1	represents G0, digit F represents G1, digit E represents G2 and digit D represents
		G3.
		Binary Code Output
2	2	Digital display outputs on SCB board give Binary Code output where digit G
		represents B0, digit F represents B1, digit E represents B2 and digit D represents B3.
3	2	7 Segment + Arrows
	3	Digital outputs are 7 segment display data and direction arrows.

[B31] HALL DISPLAY OUTPUT

0	7 Segment Display	
0	Digital outputs are 7 segment display data.	
	Gray Code Output	
1	Digital display outputs ALPK board give Gray Code output where	
T	digit G represents G0, digit F represents G1, digit E represents G2 and digit D	
	represents G3.	
	Binary Code Output	
2	Digital display outputs on ALPK board give Binary Code output where	
2	digit G represents B0, digit F represents B1, digit E represents B2 and digit D	
	represents B3.	
	At Floor Level Signal	
3	Digital display outputs on ALPK board give floor number outputs such as A-701,	
5	B-702G-707, 2G-708, 2BC-709. For example, if the car is at floor 2 then only B	
	segment (702) will give an output where all other segments will be inactive.	

[B32] CNT CHECKING

This parameter defines the way contactors are checked.

0	Checking Off No contactor checking is carried out. Warning: This option can be used only for installation, repair and maintenance purposes. This parameter is not allowed to be set 0 for normal operation according to the current lift standards.
1	<u>Checking On</u> Contactor checking is always carried out.

[B33] DOOR BUTTONS

	Separately
0	Door open and door close buttons of two car doors function separately. In order to
	do this, there must be two car panels in the cabin.
	Together
1	Door open and door close buttons of two car doors function together. There is only
	one car operating panel in the cabin for the two car doors.

[B34] MENU CHARACTER SET

This parameter is passive in current software version.

0	Latin Character Set (Standard)
	LCD screen has Latin Characters.
1	Russian Character Set (Cyrillic)
	LCD screen has Cyrillic Characters.

[B35] FLOOR RESETTING

This parameter determines if a resetting travel is started after a power start-up.

0	Not Activated
	The lift will not start to travel to reset the counting system after any start-up.
1	Go Resetting
	When the lift is switched on then the lift travels the base (or top) floor to reset floor
	counting system where the floor selector is not absolute encoder, namely [A05<4].

[B36] BLOCKING INHIBIT AT SLOW MOTION PERIOD

0	<u>Can Be Blocked</u> Timeout of the timer [T31] Slow Speed Pass Period results in blocking of the
0	
	system.
	No Blocking
1	Timeout of the timer [T31] Slow Speed Pass Period does not in block the system.
	If [A10=0], then timeout [T05] Floor Pass Period will not block the system, too.

[B37] MOTION IN INSPECTION

This parameter determines the limits of the inspection travel in the shaft limits.

	<u>Stop At 817 / 818</u>
0	The motion in inspection stops upwards at 818 and downwards at 817. Beyond
	these limit switches no inspection motion is allowed.
1	To the Last Floor
1	Inspection motion can continue until last floor levels upwards and downwards.

[B38] DOOR OPEN CHECK

This parameter determines the method of the door open check.

0	Check Always
0	Door open check is always carried out when a door open command is executed.
	Check Once
1	Door open check is carried out once at the first opening after reaching a new floor.
	If it is passed then no check is carried out at this floor any more. If not passed the
	system will be blocked.
	No Checking
2	No door open check is carried out.
	Warning: This option is not in conformity with EN81-20/50.

[B39] NUMBER OF FIRE DOOR

12 This parameter defines the number of car doors in fire-fighter lift (EN81-72).	
---	--

[B40] FIRE SWITCH

See chapter 9 for more details.

0	Normally Closed Fire alarm is activated if the input FRx is passive.
1	Normally Open Fire alarm is activated if the input FRx is active.

[B41] DOORS IN FIRE

This parameter determines the door status at fire while the car rests at fire exit floor if fire standard is selected EN81-73. See chapter 9.

0	Doors wait open at fire exit.
1	Doors wait closed at fire exit.

[B42] FIRE FLOOR 3

063	When the input terminal assigned to the input function FR3 is activated then the
005	car immediately moves to the floor defined in [B42].

[B43] FIRE FLOOR 4

063	When the input terminal assigned to the input function FR4 is activated then the
005	car immediately moves to the floor defined in [B43].

[B44] EMERGENCY PHONE BUTTON

This parameter defines the button used to activate emergency phone.

0	Emergency phone is activated when <u>INTERCOM BUTTON</u> being pressed for 5 seconds.
1	Emergency phone is activated when <u>ALARM BUTTON</u> being pressed for 5 seconds.

[B45] CAR CALL CANCELLATION

0	PASSIVE
0	Car call cancellation system is passive.
	ACTIVE
1	Car call cancellation system is active. Car calls can be cleared by pressing onto the
	button once more unless this call is not for the target floor.

[B46] ACCEPT GSM CALL

0	PASSIVE
0	Phone calls coming to GSM emergency phone are not accepted.
1	ACTIVE
L	Phone calls coming to GSM emergency phone (EM-CALL) are accepted.

4.3) P03-TIMER PARAMETERS

In all T type parameters (timings), one unit corresponds to 0.1 sec.

[T01] BUSY PERIOD

20999	Busy period during which cabin light and Busy output (16) are activated.

[T02] PARK WAIT PERIOD

50 0000	If the parking function has been defined in parameter [B06] (1 or 2) then the lift starts to travel to the parking floor specified in parameter [B07] when no calls
	have been received after the last travel for the time period specified in this parameter.

[T03] WAIT IN FLOOR

31 444	This parameter defines the time period for the car to wait before departing for the	
	next call in collective systems.	

[T04] RESERVED

[T05] FLOOR PASS PERIOD

60 2500	This parameter defines the maximum time interval in which the lift travels from
	one floor to the next one. If this interval is exceeded an error signal (6) is created.

[T06] OPEN WAIT PERIOD-1

zn uuu	After a door-1 open command the door will wait for the period defined in this
	parameter to close back.

[T07] CONTACTOR WAIT FOR START

	After executing a motion command, the device activates the contactors and waits
215	for the period defined in this parameter for the contacts of the contactors to settle
	down. At the end of this period, motor driver is enabled.

[T08] BRAKE DELAY AT START

7 50	The brake coils are activated after a time delay when the device has been enabled.
	This parameter defines this delay.

[T09] ZERO SPEED PERIOD

	Zero Speed period is present only in closed loop systems. As soon as the device has
	been enabled after a motion command zero speed operation is started to hold the
	motor shaft stationary. This period starts with [T08] simultaneously. After [T08]
	period brakes are opened. Therefore [T08] must be smaller than [T09].

[T10] START SPEED ACCELERATION PERIOD

	When a motion command is received then the speed is increased up to the start
250	speed [S01] in a time period defined in this parameter.
	This parameter has no effect if [S09] parameter is set to 0.

[T11] START SPEED WAIT PERIOD

	This parameter defines how long the driver will hold the car at the starting speed
250	[S01]. At the end of this period, the motor driver starts to accelerate up to its
	command speed. This parameter has no effect if [S09] parameter is set to 0.

[T12] DC BRAKE PERIOD

250	When the speed is lower or equal to the stopping speed [S18] in deceleration phase
	then either Zero Speed (in closed loop systems) or DC Braking (in open loop systems)
	is activated to hold the motor stationary. Active DC Braking or Zero Speed period is
	the sum of [T12] + [T13]. It means that the timer related to this parameter counts
	down after [T13] period has been diminished.

[T13] BRAKE HOLD DELAY AT STOP

350	When the speed is lower or equal to the stopping speed [S18] in deceleration phase the time, period defined in this parameter is initialized and at the end of this period
	brakes are closed. After this point DC Braking or Zero Speed starts to count down and terminates after [T12] period.

[T14] CONTACTOR DELAY AT STOP

7 50	This timer defines the delay for the contactors to switch off after all operations
	related to the travel has been completed.

[T15] DTS BUTTON DELAY-1

40500	DTS (Door close button) is inhibited during the period defined in this parameter
	after arrival at the floor.

[T16] RESCUE STARTUP DELAY

30300 The starting delay of rescue operation after a power failure or phase failure.
--

[T17] CAM ACTIVATION DELAY

7 30	Time delay to activate door close after the door contact becomes ON in semi-
	automatic door.

[T18] K20 PERIOD

X 500	When K20 input function is activated then door-1 will open. Then it will wait for the
	time period specified in this parameter before closing back.

[T19] PHOTOCELL PERIOD-1

70 500	When FOT input function is activated then door-1 will open. Then it will wait for the
	time period specified in this parameter before closing back.

[T20] DOOR OPEN PERIOD 1

	This parameter defines the time period for door-1 to open. The controller checks if
3080	the door-1 is open (or more accurately, not closed anymore) within this period after
	a door-1 open command.

[T21] DOOR CLOSING PERIOD-1

	After a door-1 close command has been executed then the controller waits for a
	time period defined in this parameter for door-1 to be closed. If door-1 is not closed
	within this time period then an error (8) will be created.

[T22] DOOR OPEN WAIT PERIOD-2

30 444	After a door-2 open command the door will wait for the period defined in this
	parameter before closing back.

[T23] K22 PERIOD

8500	When K22 input function is activated then door-2 will open. Then it will wait for the
	time period specified in this parameter before closing back.

[T24] PHOTOCELL PERIOD 2

	When FT2 input function is activated continuously for the time period defined in
20500	this parameter then door-2 switches to slow close-2 mode and activates slow
	closing-2 for the door-2 provided that other than 0 is selected in parameter [B17].

[T25] DOOR OPEN PERIOD-2

3080	This parameter defines the time period for door-2 to open. The controller checks if
	the door-2 is open (or more accurately, not closed anymore) within this period after
	a door-2 open command.

[T26] DOOR CLOSING PERIOD-2

0999	After a door-2 close command has been executed then the controller waits for a
	time period defined in this parameter for door-2 to be closed. If door-2 is not closed
	within this time period then an error (8) will be created.

[T27] DOOR CONTACT TEST

	When KL1 and KL2 inputs become ON and but safety line is not closed after a door
6999	close command within the period in this parameter then the system will evoke
	error (40). The doors are opened.

[T28] DTS BUTTON DELAY-2

6 aua	DT2 (Door close button) is inhibited during the period defined in this parameter
	after arrival at the floor.

[T29] GRUP DOOR WAIT

	This parameter is used only for group lifts.
3003000	If a door will not be closed after a door close comment as long as the time in this
	parameter then this lift will not work as a group lift anymore.

[T30] IOT PERIOD

	This parameter is used in IOT systems and defines the period of sending state
032000	variables to the server.
	A value of "0" inhibits sending data to the server.

[T31] SLOW SPEED MAXIMUM PERIOD

	This parameter stores the maximum period to reach the floor level in slow speed.
501000	When this time is over, error (6) is generated and if parameter [B36=0] then system
	is blocked. [B36=1] prevents blocking after after timeout of [T31].

[T32] ERS DOOR WAIT PERIOD

20 300	This parameter defines the time delay to close the door after arrival at the floor on
	the rescue mode.

[T33] MAXIMUM BUSY PERIOD

0	Inactive
	If the doors are left open or cannot close for a period of [T01] then the busy signal and cabin lights are switched off at the end of this timer [T33]. When a new call is
	received then lights are activated again and this function is disabled.

[T34] PHOTOCELL BYPASS PERIOD 1

	When FT1 input function is activated continuously for the time period defined in
503000	this parameter then door-1 switches to slow close-1 mode and activates slow
	closing-1 for the door-1 provided that other than 0 is selected in parameter [B17].

[T35] PHOTOCELL BYPASS PERIOD 2

	When FT2 input function is activated continuously for the time period defined in
503000	this parameter then door-2 switches to slow close-2 mode and activates slow
	closing-2 for the door-2 provided that other than 0 is selected in parameter [B17].

[T36] MAXIMUM RESCUE PERIOD

	This parameter defines the maximum time period allowed for emergency rescue
6005000	operation. If the rescue operation is not completed within this period then it will
	be terminated by the controller.

[T37] INSPECTION EXIT DELAY

30 600	After inspection the system is switched to Normal mode from inspection then the
	system waits for the period defined in this parameter to start any travel.

[T38] DIRECTION DELAY

1 //11 //11 //11	When the lift arrives at a new floor then its last direction before stopping is kept
	unchanged within the time interval defined in this parameter.

[T39] LOADING PERIOD

09999	When LDB input function (loading button) has been assigned to an input terminal
	then pressing LDB button holds the doors open within the time period defined in
099999	this parameter. The door will not be closed due to a new call. Only DTS and DT2
	buttons (door close) can terminate this function.

[T40] ENCODER CONTROL

2099		When an incremental encoder is used to get car position [A05=2] it is checked by
	using this timer parameter. If no encoder pulses have been received for a time	
	2099	interval defined in this parameter then an error signal is created (13) and the motion
		will be stopped.

[T41] PRIORITY PERIOD

	Priority waiting period. After the lift is called by a priority key and no further call is	
3003000	received for a time period defined in this parameter then the priority operation is	
	cancelled.	

[T42] CAM DELAY

0 60	This parameter is used for semi-automatic doors and defines the activation delay
060	period of retiring cam after the landing door has been closed.

[T43] CAM TIMEOUT

30900	This parameter is used for retiring cam in semi-automatic doors and defines the timeout period of retiring cam. If 130 signal in safety line does not become ON within the period defined in this parameter after activated, then error 61 will be evoked and CAM will be deactivated.
-------	--

4.4) P04-SPEED PARAMETERS

[S01] NOMINAL SPEED (m/s)

0,)1 5,0	Maximum allowed travel speed for normal operation.
----	--------	--

[S02] RECALL SPEED (m/s)

[S03] RELEVELING SPEED (m/s)

0,005 ... 0,1 The travel speed used in releveling.

[S04] INSPECTION NORMAL SPEED(m/s)

0,01 0,63	The travel speed in inspection operation where in downwards motion [817=1]
	and upwards motion [818=1].

[S05] INSPECTION SLOW SPEED(m/s)

0,01 0,30	The travel speed in inspection motion below 817 downwards [817=0] and
	above 818 upwards [818=0].

[S06] RESCUE SPEED (m/s)

0,01 0,50	The travel speed in rescue operation.
-----------	---------------------------------------

[S07] RESETTING TRAVEL SPEED (m/s)

0,05 2,0	The travel speed used in resetting travel.

[S08] CREEPING SPEED (m/s)

0,02 0,20	The travel speed used while approaching the floor.
-----------	--

[S09] STARTING SPEED (m/s)

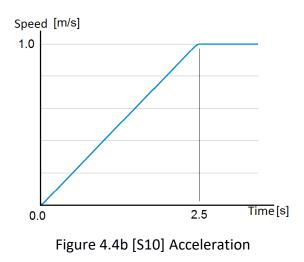

	If this parameter is zero then the device starts its motion from zero.
	If this parameter is non-zero then the device accelerates in [T10] time period
	to starting speed [S09] at start. Then it waits for the time period [T11] at the
0,0 0,10	starting speed. See Figure 4.4a.
0,0 0,10	Start speed is used mainly in open loop applications where proper control of
	the motor at very low speeds is nearly impossible due to the lack of feedback
	loop.

Figure 4.4a Acceleration

[S10] ACCELERATION (m/s²)

0,15,0	Acceleration value of the system.
0,15,0	Increasing the value makes the lift reach to the target speed in shorter time.

When lift receives higher speed command while stopping or while moving with a constant speed, system increases motion speed gradually to command speed. As seen on Figure 4.4b, speed – time curve is linear. Gradient of line is acceleration (ACC) value. [S10] parameter is set for the acceleration value of the device.

In Figure 4.4b, system receives a 1m/s target speed command while stopping. [S10] value is the time to reach the target speed. Lift reaches target speed in 2.5 seconds, so the acceleration value is:

[S10]= SPEED / TIME = (1,0 m/s) / (2,5 sec) = 0,4 m/s².

If acceleration [S10] increases, system reaches target speed in shorter time.

[S11] S-CURVE IN ACCELERATION START (m/s³)

	The increase in acceleration in the S-Curve at the beginning of acceleration. A
0,15,0	lower value in this parameter results in a softer start of travel but increases the
0,15,0	travel time. A higher value in this parameter results in a faster transition to
	acceleration path but less comfort.

S-Curve at Starting

Device accelerates with [S10] acceleration value when it receives any speed command higher than current speed. Passengers in the car feel the change of acceleration in this case. In order to avoid such situations, S-curves are employed where a change in acceleration is required.

As seen on Figure 4.4c, acceleration starts from zero and increases slowly up to the desired acceleration [S10] value.

In S-curve region the acceleration is increased gradually, not suddenly. At the end of the S-curve region the device reaches [S10] acceleration value. Lower values of [S11] and [S12] mean soft transition, and such lower values-increase total motion time.

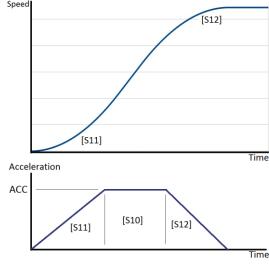


Figure 4.4c Acceleration S-Curve

[S12] S-CURVE IN ACCELERATION END(m/s³)

0,15,0		The decrease in acceleration in the S-Curve at the end of acceleration. A lower
	01 50	value in this parameter results in a softer transition at the end of the acceleration
	0,15,0	path but increases the travel time. A higher value in this parameter results in a
		faster transition to the travel speed.

S-Curve at Stopping

Device slows down with [S13] deceleration value when it receives any speed command lower than its current speed. Passengers in the car feel the change of deceleration during this period. In order to avoid such situations, S-curves are employed where a change in deceleration is required.

As seen on Figure 4.4d, deceleration starts from zero and increases gradually to the desired deceleration [S13] value.

In S-curve region the deceleration is increased gradually not suddenly. At the end of the S-curve region the device reaches [S13] acceleration value. Lower values of [S14] and [S15] mean soft transition, and such lower values increase total motion time.

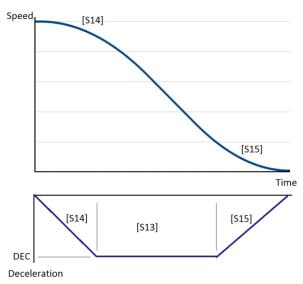


Figure 4.4d Deceleration S-Curve

[S13] DECELARATION (m/s²)

	This parameter defines the deceleration rate. Higher value shortens the slow down
0,15,0	path. Lowe
	r value increases slow down path and comfort.

[S14] S CURVE IN DECELARATION START(m/s³)

	S-Curve at the start of deceleration. The increase in deceleration in the S-Curve at
01 50	the beginning of deceleration. A lower value in this parameter results in a softer
	start to slowing down but increases the travel time. A higher value in this
	parameter results in a faster start to slowing down path.

[S15] S CURVE IN DECELARATION END(m/s³)

	S-Curve at the end of deceleration. A lower value in this parameter results in a
0,15,0	softer transition at the end of the deceleration path but increases the travel time.
	A higher value in this parameter results in a faster transition to stopping.

[S16] STOPPING METHOD

It is recommended to set 1 for asynchronous motors and 0 for synchronous motors.

0	Stop mode for synchronous motor.
1	Stop mode for asynchronous motor.
2	Faster stop mode for synchronous motor.
3	Faster stop mode for asynchronous motor.
4	Declining torque
[S17] STOP SPEED (m/s)	

[S17] STOP SPEED (m/s)

	[0=1]0101	
		When the speed is below the value defined in this parameter during a travel while
0,0 0,	0.0 0.1	the car is approaching the floor in slow down phase then the device accepts this
	0,0 0,1	as stop command. You should also define the method for detecting stop speed in
		parameter [S18] properly.

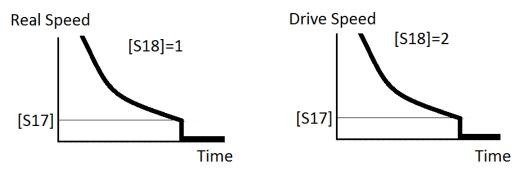


Figure 4.4f Stopping Speed Reference

[S18] STOP SPEED REFERENCE

The inverter stops motion when the travel speed is lower than the stop speed referenced in [S18] as shown in Figure 4.4f. Actual speed is the speed read by the encoder, and drive speed represents the speed calculated by the device for output. If no feedback loop is present (open loop) then this parameter should be set to 1.

The detection system of the stop speed [S18] is references by regarding the selection for this parameter.

0	Real Speed
0	Reference speed read by the encoder. Preferred in closed loop applications.
	Drive Speed
1	Reference speed is the speed calculated by the device. It may differ from actual
	speed. However, this method should be used in open loop applications.

[S19] START MODE

This parameter is used to prevent any rollback of the car in starting for synchronous motors. See section 5.5 for detailed explanation.

0	Passive
1	Anti-Rollback - Smart
2	Anti-Rollback - Fast
3	Anti-Rollback - Fast+Smart
4	Pre-Torque
	Digital weight transducer feedback is optional.
5	Pre-Torque - Analog
J	Analog weight transducer feedback is required.

[S20] STOPPING DECELERATION

0,1 5,0	This parameter defines the deceleration rate when the car gets stop command
0,1 5,0	while travelling at creeping speed.

[S21] STOPPING DECELERATION START S-CURVE

0.01 5.0	This parameter defines S-curve rate to reach the deceleration in [S20], when the
0,01 5,0	car gets stop command while travelling at creeping speed.

[S22] CREEPING PATH

0 500	This parameter defines the travel path in creeping speed. Unit is mm.
-------	---

4.5) P5-CONTROL PARAMETERS

Control parameters are mainly the parameters which are used to control the behaviour of the motor.

[C01] CARRIER FREQUENCY

Carrier frequency defines the time period during which the basic calculations of speed are carried out. Preferred values are 8-10 kHz for most of the application. However, some motors may become noisy in lower carrier frequencies.

	616	Carrier frequency [kHz]
--	-----	-------------------------

[C02] - ENCODER FILTER

This parameter defines the time period of reading encoder data. Making this period shorter results in a faster response to any speed deviation. However, a faster response may create some vibrations in speed. Set this parameter lower than 3 if ppr (pulse per revolution) value of encoder is less than 500.

0	1 ms
1	2 ms (Preferred for synchronous motor)
2	4 ms (Preferred for asynchronous motor)
3	8 ms
4	16 ms

PID Control

AE-MAESTRO is a vector-controlled lift motor driver. It calculates required data carrier frequency times and assigns voltage and frequency of motor signals. Device receives motor speed via encoder of motor. If the reference speed differs from the motor speed, device makes calculations to reset this difference. PID control contains the definitions of the adjustment procedure.

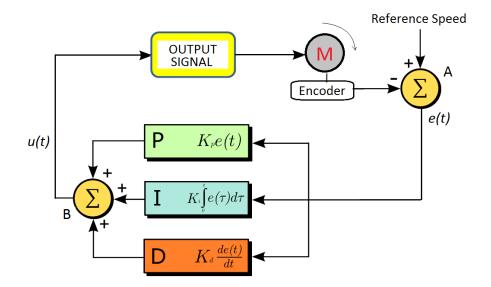


Figure 4.5a PID Control

PID is a control loop with feedback and is used in most industrial processes. It is a pre-defined procedure of output refinement process. Figure 4.5a is a typical PID motor speed control system. e(t) is the difference between motor speed and reference speed called error signal. e(t) signal is processed from 3 different parallel channels. These are Proportional (P), Integral (I) and Derivative (D) processes. All channels calculate correction signals with defined parameters and send refinement signal to B point. Sum of refinement signals creates output signal u(t). Main functions of processes are described in the table below.

TERM	PROCESS	COEF	DEFINITION
Р	Proportional	Кр	Main correction process of the control loop. The correction signal is directly proportional to the error Kp coefficient. Kp reduces the biggest part of the general error.
I	Integral Ki		The correction signal is proportional to the Ki coefficient on the sum of past errors. It reduces the last error in the system. It increases the level of static accuracy rather than momentary error corrections.
D	Derivative	Kd	It increases the system's dynamic correction ability. It prevents sudden jumps in the outlet. It has no effect on the final error. It is proportional to the coefficient of Kd to the rate of change of error.

Zero Speed PD Control

Zero speed process is used to overcome slips when mechanical brakes open at start-up. PD coefficients are used in zero speed control. [C03] and [C04] parameters are coefficients of PD control on zero speed control.

C03] - ZERO SPEED Kp

1,0200	Kp coefficient in zero speed control.
--------	---------------------------------------

[C04] - ZERO SPEED Kd

0 ...200 Kd coefficient in zero speed control.

Start Speed PI Control

Device only performs PI (Proportional and Integral) process on motion. Kp and Ti coefficients may differ in high and low speeds. Therefore, system has different Kp and Ti parameters for start speed, low speed and high speed

[C05] - START SPEED Kp

0.1100.0	Kp coefficient on PID process when reference speed is lower than Start Speed [S09]
0.1100.0	parameter.

[C06] – START SPEED Ti

0	0000	Ti (1/Ki) coefficient on PID process when reference speed is lower than Start Speed	I
0	0 9999	[S09] parameter.	

Motion PI Control

When reference speed is higher than start speed, then Kp and Ti parameters are selected from [C07]-[C12] parameters according to reference speed. [C07] and [C08] are used where the reference speed is lower than [C11] PI Low Speed; [C09] and [C10] is used where the reference speed is higher than [C12] PI High Speed. Kp and Ti parameters change linearly between [C11] and [C12] reference speeds.

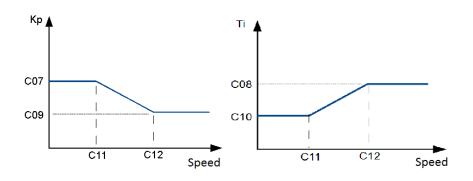


Figure 4.5b PI Values vs Speed

[C07] – LOW SPEED Kp

0.1...100.0 Kp coefficient when system speed is lower than [C11] parameter.

[C08] – LOW SPEED Ti

0.09999 Ti coefficient when system speed is lower than [C11] parameter.

[C09] - HIGH SPEED Kp

1100.0 Proportional gain coefficient, Kp when the system speed is higher than [C12].
--

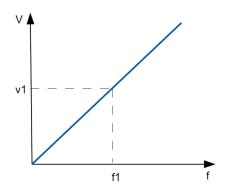
[C10] – HIGH SPEED Ti

0.0.0000	Inverse of the integral gain coeffient Ti, when the system speed is higher than	
0.09999	[C12].	

[C11] - LOW SPEED PI

0.0 1.0	C11 sets the lower transition speed for PID coefficients Kp and Ti. See Fig. 4.5b.
---------	--

[C12] - HIGH SPEED PI


[C13] – CURRENT Kp

0.1...9.9 Proportional gain Kp coefficient of the current PID loop.

[C14] - CURRENT Ti

0.0....9999 Ti, inverse of the integral coefficient of the current PID loop.

Open Loop Control

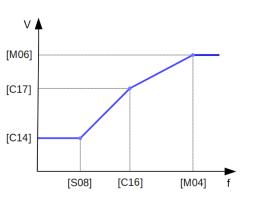


Figure 4.5d Open Loop Real V/f Curve

AE-Maestro is designed for lift operation with space vector control algorithm. Vector control requires a feedback from motion. This system is a more effective method for lift operations. However due to mechanical obstacles, encoder cannot be mounted onto motor. Feedback of motor cannot be received in this system called open loop control. Due to feedback loss, stopping sensitivity can change according to the load on system. Use this system below 1m/s and for low load capacity lift operations.

Open loop control uses voltage/frequency (V/f) curve. As seen on Figure 4.5c, all frequencies have different voltage values. Increase on frequency increases drive voltage. However, on low frequencies, system cannot drive a motor because of the low voltage values. Adjust low frequency settings with [C16] and [C17] parameters shown in Figure 4.5d.

[C15] - DC BRAKE LEVEL (%)

	This is a parameter for open loop applications.
5.0100.0	[C15] parameter defines the DC brake level at start-up and stopping. In DC
	braking the motor is held stable until the inverter starts to rotate the motor at
	starting and until the mechanical brake is released at stopping. The value of this
5.0100.0	parameter is used to define the strength applied to electrical braking power.
	DC brake may warm up motor. On the other hand, if the value is lower than
	required, then the control of the motor in starting and stopping may become
	harder.

[C16] - V/F STARTING SPEED

	This is a parameter for open loop applications.
0.11.0	In V/f mode, system cannot start up with linear curve due to the static load.
	Instead the inverter drives motor with a constant voltage below a frequency
	point. [C16] parameter is the start point of V/f curve.

[C17] - V/F STARTING TORQUE

	This is a parameter for open loop applications.
	Minimum torque level when system speed is under [C16]-V/f Low Speed at
0,11	starting and stopping phases. If the value is greater than required, then motor
	may vibrate. If the value is smaller, then the device cannot drive motor smoothly
	at low speeds.

[C18] - TORQUE Kp

	0.19.9	Kp coefficient of torque feedback.
--	--------	------------------------------------

[C19] - TORQUE Ti

0.09999	Ti coefficient of torque feedback.
---------	------------------------------------

[C20] - TUNING CURRENT (%)

	The percentage of the nominal motor current that will be applied to the
0.0100.0	synchronous motor in tuning process.
	If motor tuning is not successfull then increase [C20].

[C21] – FIELD WEAKENING

If motor is driven above its nominal speed, magnetizing current has to be decreased. This process is called Field Weakening. [C21] parameter determines whether field weakening is active or inactive.

	Passive
0	No field weakening. Magnetizing current will not be decreased.
	(Motor may not reach set speed)
1	Active 1
1	Field weakening is activated. (Method 1)
2	Active 2
2	Field weakening is activated. (Method 2)

[C22] – RESERVED

[C23] - PULSE/mm

	This parameter stores the corresponding number of encoder pulses for 1 mm
	travel of the car. This parameter is set automatically in shaft learning process.

4.6) P06-MOTOR PARAMETERS

[M01] - ENCODER PULSE

100...5000 Pulse value of encoder. Get this information from encoder label.

[M02] - MOTOR SPEED

0,1...5,0 Nominal speed of motor. Get this information from motor label.

[M03]- MOTOR RPM VALUE

10...3000 RPM value of motor. Get this information from motor label.

[M04] - MOTOR FREQUENCY

5...250 Nominal frequency of motor. Get this information from motor label.

[M05]- MOTOR CURRENT

1...60 Nominal current of motor. Get this information from motor label.

[M06] - MOTOR VOLTAGE

100...450 Nominal voltage of motor. Get this information from motor label.

[M07] - MOTOR COS VALUE

0,11 Cos value of motor. Get this informat	tion from motor label.
--	------------------------

[M08] – NUMBER OF MOTOR POLES

2200 Number of poles of motor. Get this information from motor label.	
---	--

[M09] - MOTOR NOLOAD CURRENT (%)

5 100	Ratio of motor no-load current and motor nominal current. If the value is high,
	motor might use more current, otherwise if the value is low then motor start-up
	might be noisy or it cannot start-up.
	This parameter has no effect in synchronous motors (gearless machines).

[M10] - MOTOR Rs (ohm)

[M11] - MOTOR Ls (mH)

[M12] - MOTOR Rr (ohm)

_	-		
C),110	Resistan	e value of rotor. Automatically set by tuning process.

[M13] - MOTOR Lm (mH)

10...3000 Mutual inductance value of motor. Automatically set by tuning process.

[M14] - MOTOR Tr (ms)

10 2000	Rotor time constant of motor. Automatically set by tuning process. This parameter
105000	has no effect in synchronous motors (gearless machines).

[M15] - ENCODER OFFSET

0...359.99 Encoder offset in synchronous motor. Automatically set by tuning process.

[M16] - ENCODER TYPE

This parameter defines the encoder type used in the inverter. An asynchronous motor uses INCREMENTAL encoder where an asynchronous motor needs an absolute encoder listed between 1...7.

0	INCREMENTAL	4	SSI (Gray)
1	ENDAT	5	ENDAT-SPI
2	SINCOS	6	BISS-BIN (Binary)
3	BISS (Gray)	7	SSI-BIN (Binary)

[M17] - ENCODER DIRECTION

This parameter interchanges encoder channels. Change this parameter only if there is an encoder direction fault at installation, otherwise check encoder and connections.

1	CLOCKWISE	2	COUNTER CLOCKWISE
---	-----------	---	-------------------

[M18] - TUNING MODE

	Stationary Tuning
0	Tuning process is carried out while motor is held stationary. Motor brakes must be held
	closed to prevent any rotation.
	Rotating Tuning
1	Tuning process is carried on with motor rotation. Brakes must be opened to allow
	rotation.

[M19] – MOTOR DIRECTION

This parameter determines the rotation direction of the motor. After tuning process, if the car moves upwards for a down command or vice versa then change the value of this parameter.

1	Direction 1
2	Direction 2

[M20] – CAR DIRECTION

This parameter determines the count direction of the car when motor encoder is used as floor selector [A05=2]. After installation process, if the floor position is counted reversely then change the value of this parameter.

1	Direction 1
2	Direction 2

4.7) P07-HARDWARE PARAMETERS

[E01] – LANGUAGE

The screen language of ICL board (2x20 monochrom LCD) is set by this parameter.

To adjust the screen language of the TFT hand terminal of the device consult its user manual.

0	Turkish	4	Russian
1	English	5	Spanish
2	German	6	Greek
3	French	7	Italian

[E02] – BUTTON PRESSED CONTROL

This parameter enables or inhibits checking of faulty button.

0	PASSIVE
0	No faulty button is checked.
	ACTIVE
	If a landing button remains pressed for 5 minutes then the system creates an error.
1	This button is not read anymore and the lift can function normally. When the
±	system is switched off or entered into inspection mode then disregarding the
	button is terminated. Note that this function can be used only in car serial
	connection.

[E03] – DEVICE LED DISPLAY

This parameter determines the information displayed in the LED DISPLAY on the device

	Displayed Variable		Displayed Variable
0	Floor Number	5	DC Bus Voltage
1	Real Speed	6	Target Floor
2	Travel Speed	7	Device Phase
3	Set Speed	8	Motion Phase
4	Current		

[E04] – LANDING ARROWS

This parameter determines the information indicated by landing arrow.

0	<u>Motion Direction</u> Landing arrows indicate motion direction.	1	<u>Service Direction</u> Landing arrows indicate next direction.
---	---	---	---

[E05] - SERIAL CHANNEL 1

This parameter determines for which purpose serial port 1 SP1 is going to be used.

0	FREE
0	Not used.
1	PC COMMUNICATION
1	It is used to transfer data to a PC via Ethernet or USB interface.
2	GSM
2	A GSM system is connected to SP1.

[E06] - SERIAL CHANNEL 2

This parameter determines for which purpose serial port 2 SP2 is going to be used.

•	FREE
0	Not used.
1	PC COMMUNICATION
1	It is used to transfer data to a PC via Ethernet or USB interface.
2	GSM
2	A GSM system is connected to SP2.

[E07] - CAR CAN CHANNEL

0	CAN 0
0	Car CAN channel is always CANO. It cannot be changed.

[E08] - LANDING CAN CHANNEL

E08 defines the interface channel for landing panels.

0	CAN 0	2	CAN 2
1	CAN 1	3	NOT ACTIVE

[E09] - GROUP CAN CHANNEL

If the lift is employed in a group, then CAN2 is used as group communication channel with group manager. In this case you are not allowed to define any other device communications in CAN2.

In simplex lift leave this parameter as 3.

	2	CAN 2	3	NOT ACTIVE	
--	---	-------	---	------------	--

[E10] - ENCODER CAN CHANNEL

A10 defines the interface channel for absolute CAN encoder.

0	CAN 0	2	CAN 2
1	CAN 1	3	NOT ACTIVE

4.8) P08-SPECIAL PARAMETERS

[U01] - TEMPERATURE LIMIT

55-85	Temperature limit of the system. If device temperature exceeds this limit, it
22-62	stops working until the temperature decreases below the limit.

[U02] - CURRENT COEFFICIENT

Ī	0.1-5.0	The system uses this coefficient in current sense function.
L		

[U03] – DYNAMIC BRAKE START

	If DC-Bus voltage exceeds the voltage defined in this parameter, then dynamic
350-770	braking is started.
	The device lowers DC-Bus voltage level by sending current to the braking resistor.

[U04] – DYNAMIC BRAKE END

345-765	Dynamic braking is terminated, if dc-bus voltage gets down under the voltage
545-705	defined in this parameter.

[U05] – DYNAMIC BRAKE PERIOD

0-6 Frequency of dynamic braking operation.	
---	--

[U06] – MAXIMUM OUTPUT FREQUENCY

This parameter defines the maximum output frequency of motor driver.

0	100Hz
0	Motor Frequency is less than or equal to 100 Hz.
1	250Hz
1 I	Motor Frequency above 100 Hz.

[U06] – LINE VOLTAGE

This parameter defines line voltage.

0	0 Line Voltage is 3x400V	
1	Line Voltage is 3x200V / 3x190V	
2 Line Voltage is 1x220V/230V		

[U08] – PRE-TORQUE Kp

1-100	The value in this parameter determines the magnitude of the torque applied in
1-100	pre-torque operation. Increasing value increases the torque.

[U09] – PRE-TORQUE PULSE

2-50	The value in this parameter determines after how many pulses of rollback, pre-
2-50	torque operation will be activated.

U10] – PRE-TORQUE SPEED

0.0-0.1	The value in this parameter determines after reaching which speed of rollback,
0.0 - 0.1	pre-torque operation will be activated.

[U11] – PRE-TORQUE PERIOD

1-500	The value in this parameter determines Ti period in pre-torque operation.
1-500	Decreasing Ti will increase pre-torque power.

[U12] – SPEED FILTER

<u> </u>	
1-20	Low pass filter of the system speed feedback.

CHAPTER 5 – SERVICES AND UTILITIES

There is a number of services and utilities for various applications and tests. You can execute them by pressing **SERVICES** icon in the main menu and then related line.

5.1.1) Auto Learning and Adjustment of Floor Levels

You should execute auto learning service routine if the floor selector is encoder. The controller learns the position of the floors and shaft limits through executing this process. After auto-learning process you should check and adjust floor levels if required.

a) For shaft or motor encoder [A05=2,3]
 Use the following manual for installation:
 A1M-EN-02 FLOOR SELECTOR INSTALLATION AS INCREMENTAL ENCODER

If the number of stops is greater than two:

- Execute **R02-SHAFT LEARNING** service routine. In this operation the floor positions are registered and **(pulse/mm)** ratio is calculated for further speed and distance calculations.

If the lift has only two stops:

- Replace door region magnet (strip magnet determining door zone) of the top floor minimum 30 cm downwards, temporary.
- Then execute **R17-GET ENC.PULSE RATIO** service routine. This routine measures and saves pulse/mm ratio.
- Then place the strip magnet to its original position at top floor.
- Execute **R18- ENC.LEARNING FLOORS** service routine. In this operation only floor positions are registered. Pulse/mm ratio stays unchanged.
- b) For encoder Limax2M [A05=4]
 Use the following manual for installation:
 A1M-EN-03 FLOOR SELECTOR INSTALLATION AS LIMAX2M
- You need only ML1 and ML2 switches in this application.
- 817 and 818 switches are not used.
- Execute **R18- ENC.LEARNING FLOORS** service routine. In this operation only floor positions are registered. Pulse/mm is always 1 in this floor selector selection.
- c) For Limax3CP [A05=5]
 Use the following manual for installation:
 A1M-EN-04 FLOOR SELECTOR INSTALLATION AS LIMAX3CP

the second s
R01 UCM ERROR CLEAR
R02 SHAFT LEARNING
R03 FLOOR PULSE ADJUST
R04 TUNING
R05 UCM TEST
R06 LIMIT STOP TEST
R07 OPERATIONS
R08 FACTORY DEFAULTS
R09 CLEAR ERROR LOG
R10 CLEAR ENCODER DATA

5.1.2) R5-RESET PULSES

You can set all encoder pulse values by using this routine in a form that can be used in simulation mode. To execute it select in main menu **SERVICES** icon -> **R10-CLEAR ENCODER DATA**. You will be asked to enter Pulse/mm ratio and floor to floor distance. After confirming the operation Pulse/mm ratio and the floor positions starting from 1000 and incrementing by the given floor to floor distance will be saved.

5.2) PRIORITY FUNCTION

AE-MAESTRO software has a priority function. This function is very useful in buildings where public lifts are used. In case of emergency, these lifts can be called and used as a private lift by inhibiting normal usage. This system works only in full serial systems where landings are serial and requires access control readers (RFID or i-Button) in all landings and car.

All applications and data entry are carried out by using the menus under **PARAMETERS** icon -> **P08-ACCESS CONTROL.**

In order to start priority operation firstly set ID Control parameter [B21] to 1...4. So, you can register new ID cards or i-Buttons into the ACCESS CONTROL SYSTEM. The only difference in registering the keys for priority operation is that you should select 4 in EDIT ALLOWANCE. In this way the ID keys are registered for priority control. Once you have completed registering the ID keys, modify the value of parameter [B21] to 0. This makes the ID Control system inactive. Then set the parameter controlling priority operation [B21] to 1 to enable priority travel operation.

When [B21] is 1 then the lift operates normally while there is no priority request. A priority request can come from car or from any landing when their access control readers are activated with a registered ID key. When an ID key is read from any of the landing access control readers while the lift is moving then it changes its target to the floor where the priority call is given. If the current motion direction and the direction towards to the floor of the priority call are opposite, then the lift stops at the first floor in its travel direction. It immediately changes its direction and moves directly to the floor where the priority call is activated.

When the lift arrives at the floor of priority call, it stops and waits with open doors. The person with the priority key enters the car and then he or she shows his or her key to the access control reader in the cabin. Now the lift is ready for a priority travel. The person can bring the lift to any floor by means of pressing a button on the car panel.

The lift does not accept any landing calls throughout the priority service time. Only car buttons can be used to move the lift during this period.

The priority operation will be terminated when the access control reader inside the car is activated by the priority key for the second time. There is also a timeout to exit from priority system. If there are no calls in car panel for a time period defined in parameter [T41] while the lift is stationary, then priority service routine is terminated.

5.3) ACCESS CONTROL SYSTEM

Access control utility permits only the users with appropriate permission to use the lift, in other words, it restricts any person who is not allowed to use the lift for a specific floor or time interval. For this purpose, each lift user should have a RFID card or i-Button key with a unique user ID. In this section, how to register a new ID to the system as well as how to change its permission details will be explained. Access control system is active only when the parameter [B21] has a value greater than '0'.

5.3.1) ID LIST

For editing registered ID settings, you can use the utility in **PARAMETERS** icon -> **P08-ACCESS CONTROL** -> **Y1-ID LIST**. When this section has been selected then registered ID list will be displayed on the screen. As you can see below each line shows one ID-code which contains three parts. You can move the arrow at the left side of the ID. Select the line you want to edit then press ENT. **OA6578BF/FFFFFF1**

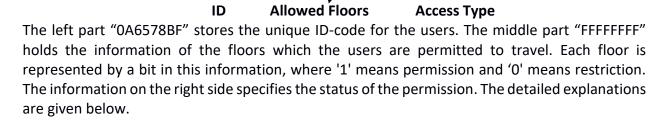


Table 5.1a shows the operations you can select and their explanation and operation codes.

5.3.2) FORMATS

When you want to add a new card or key to the system, you must assign it to a format. A format holds the information besides ID-code, namely allowed floors and status. There are 15 formats in the system. Therefore, we recommend you to evaluate your formats before starting to add keys or cards. The idea behind formats is to group users with similar permission criteria. When you first save the permission details in a format, then you can add a number keys or card with this format and lots of details will be saved automatically. You do not need to edit the specifications for each new user separately.

>01:0000000/1 02:0000000/1

There are 15 formats in the system. You can see all formats with the number 0 to 14 by moving the UP and DOWN buttons on the screen. Select the one you want to edit and then press ENT. You can edit a format similarly to the editing of an ID explained in the previous section. The only difference is that the edited information belongs to a format and not to an ID-code. Therefore, you will select a format number rather than an ID-code to start.

All formats have the information "all floors are restricted" as default. You can add the floors you want to allow by using operation '4', namely "ALLOW ONE FLOOR", one by one to evaluate your format. Similarly, you can edit the status in the format.

F/7.5.5.02.102 R:2

The reason for saving more than one format is that you can split the users with similar access rights into groups and assign a different format to each group. So, in adding new cards or keys to the system, first select format and then register all the cars in this group.

1	All Floors Allowed	To allow all floors, choose 1 with UP and DOWN buttons and press ENT. (Floors = FFFFFFF)	
2	No Floors Allowed	To restrict all floors, choose 2 UP and DOWN buttons and press ENT. (Floors = 0000000)	
		0 – No Access	No access to call register
		1 – Full Access	Full access to permitted floors
3	Edit Allowance	2 – Accessible in PE1	Access to permitted floors only for PE1 period only (K8-Call Register Periods)
		3 – Accessible in PE2	Access to permitted floors for PE2 period only. (K8-Call Register Periods)
		4 – Priority Key	Key is a priority key.
4	Allow One Floor	Choose the floor number you want to allow with UP and DOWN buttons and press ENT (It is a 32-bit binary number shown in hexadecimal format. Each bit represents one floor). For stops 3, 5, 10, 16, 23, 30: Floors: 40810428 (0100000010000010000010000010000b)	
5	Restrict One Floor	Choose floor number you want to restrict with UP and DOWN buttons and press ENT (It is 32-bit binary number shown in hexadecimal format. Each bit represents one floor) For stops 0, 7, 12, 19, 25, 29: Floors: 22081081 (0010001000001000001000001b)	

Table 5.1a Allowance for ID keys

5.3.3) ACTIVE FORMAT

In this section you can select the default format which will be active. Select **PARAMETERS** icon -> **P08-ACCESS CONTROL -> Y7-ACTIVE FORMAT.**

5.3.4) ADD NEW ID

To add a new ID, select **PARAMETERS** icon -> **P08-ACCESS CONTROL ->Y2-ADD NEW ID**. On the new screen, system will wait for you to show a key or card to any station to read.

>ACTIVE FORMAT

1:0000000/1

You can see on the screen the active format. It is '1' on the screen above. You can change the active format in 0-14 range. The system will wait from you to insert a key or card to the reader. When you insert the card or the key then its ID-code will be shown on the screen. 0A6578BF

SAVED

F/7.5.5.02.102 R:2

The new registered ID will be saved with the permission and status specifications of the current format. However, you can change its specifications as explained above in "ID LIST" section anytime you want. When registering a number of new keys or cards to the system with the same permission and status specifications, you can go on adding them without changing the current active format.

5.3.5) CLEAR ID

You can use this section in order to clear any ID-code from the system. Select **PARAMETERS** icon -> **P08-ACCESS CONTROL ->Y3-CLEAR ID** line. Select the ID-code by looking at the arrow on the screen that shows the ID-code you want to clear. Then you will be prompted to clear the ID-code and complete the job.

5.3.6) CLEAR ALL ID-codes

In this section you can clear all keys registered in the system in one operation. Select **PARAMETERS** icon -> **PO8-ACCESS CONTROL ->Y3-CLEAR ALL IDS** line You will be prompted with the following screen after selecting this section. Press UP button to clear all ID-codes in the system and complete the job. Please take most care while carrying on this operation!

5.3.7) FREE FLOORS

While using an access control system there may be a request to leave some floors freely accessible, for example the entrance floor. In this section you can program free floor(s). Select **PARAMETERS** icon -> **P08-ACCESS CONTROL -> Y6-FREE FLOORS** line. When you select this section an operation code will be requested from you. The operations you can carry on and codes to set free floor(s) are listed below:

1 A	All Floors Allowed	In order to allow all floors, select '1' as operation code by UP and DOWN buttons and pross ENT key	
2	2 No Floors Allowed	buttons and press ENT key. In order to restrict all floors, select '2' as operation code by UP and	
2	No Hoors Allowed	DOWN buttons and press ENT key.	
3	3 Edit Allowance Press ENT button to set or modify the allowance data.		
4	4 Allow One Floor Choose the floor number you want to assign as free floor by UP DOWN buttons and press ENT button.		
5	Restrict One Floor	Choose the floor number you want to stop being free floor by UP and	
		DOWN buttons and press ENT button.	

5.4) MAINTENANCE CONTROL

There are two independent control systems for maintenance mode activation. The first one is by setting a maintenance time in the future and the second is specifying a maximum number of starts for the lift. If the adjusted maintenance time or number of starts is exceeded then the lift switches to maintenance mode and does not accept any calls. In order to use the lift in normal operation the following parameters must be set. Both maintenance systems can be active simultaneously.

5.4.1) MAINTENANCE TIME

The system has a real time clock. In order to inhibit lift operation due to a time limit you should set the maintenance time for a future date. This setting can be done in **SYSTEM SETTINGS** icon -> **H10-MAINT.DATE.** If this time is exceeded, then the lift enters into maintenance mode and does not start a motion any more. One should set the maintenance time for a later date to enter into normal mode. Setting **day** or **month** as 0 disables maintenance due to time.

5.4.2) MAXIMUM START

If maximum start value is set to a nonzero number then the maintenance control system will be active. This setting can be done in **SYSTEM SETTINGS** icon ->H07-MAX. **START COUNT**. If the number of starts exceeds the number set as the maximum start then the lift will stop accepting new calls. In order to return normal operation either number of starts should be reset to 0 or maximum number of starts should be set to a greater value than the current starts.

5.5) PRE-TORQUE AND ANTI-ROLLBACK

The behaviour in starting is controlled by the parameter **S19**. This parameter determines the use of additional functions in zero speed process. If [S19=0] then no additional control is carried out during zero speed control.

There are two main control systems for rollback control:

5.5.1) Anti-rollback control

In this method the slip of the car is observed and a torque in reverse direction is applied to the motor to prevent rollback. No load feedback is used. Here are related options:

Value of [S19]	Control Method	
	Anti-Rollback - Smart	
1	If a slip in travel direction is detected during zero speed operation, then zero	
	speed operation is terminated, and acceleration will start.	
	Anti-Rollback - Fast	
2	Encoder reading period is shortened internally to speed up the response time	
	to any slip in any direction.	
	Anti-Rollback - Fast+Smart	
2	Both control methods in 1 and 2 are involved simultaneously. The response	
3	time to any movement gets faster as well as the inverter switches directly to	
	the acceleration curve when any rollback in travel direction is detected.	

5.5.2) Pre-torque control for synchronous motor

For pre-torque application a feedback loop with a weight transducer is optional. It is usually an electronic overload device. First read and follow the instructions in the installation manual **AP04_AEM_INSEN_PRET_SENSOR** to install the system for pre-torque.

5.5.2.a) Pre-Torque (Digital feedback is optional)

Value of [S19]	Control Method	
	Pre-Torque	
4	Zero speed control is performed with pre-torque. Feedback coming from	
4	the digital outputs of the load sensor of cabin is optional and decreases	
	the rollback motion.	

For digital feedback of weight transducer connection, there are three digital inputs as **LS1, LS2** and **LS3.** They can be connected to the digital outputs of the weight transducer device. The output of the weight transducer device should be adjusted to output the digital outputs as shown in the Table 5.5.

Table 5.5. LS1, LS2 and LS3 Inputs

x% : Cabin Load at starting / Nominal Load of the car	LS1	LS2	LS3
CL: Cabin Load at starting	%25	%50	%75
CL < 25%	0	0	0
25% <= CL < 50%	1	0	0
50% <= CL < 75%	1	1	0
CL > 75%	1	1	1

- If 3 outputs are used, then define and set LS1, LS2 and LS3 as 25%, 50% and 75% loads, respectively.
- If 2 outputs are used, then define and set LS1 as 30% and LS2 as 70% loads.
- If only one output is used, then define and set LS1 as 50% load.

ILC estimates and applies the required pre-torque to prevent rollback for the instantaneous cabin load by using the information in Table 5.5. This method works also without feedback. Of course, since there is only three bits feedback information no perfect result can be achieved.

- If rollback still presents, go to **P09-SPECIAL PARAMETERS** menu and adjust parameters **U08**, **U09**, **U10** and **U11** to get a better result.
- The functions of these parameters are described below.
- If no rollback but jerk is present, then decrease U08.
- Please be aware of that the configuration that gives best comfort may vary depending on the motor type and application. You may need some trials.

PARAMETERS USED IN PRE-TORK OPERATION			Used For
U08	PRE TORQUE KP	It determines the gain in this process. Increasing value makes pre-torque stronger.	S19 = 5 S19 = 4
		This parameter determines after how many pulses of	S19 = 4 S19 = 5
U09	U09 PRE TORQUE PULSE	rollback will the system start to apply pre-torque.	S19 = 4
U10	PRE TORQUE STARTING SPEED	This parameter determines after which rollback speed will	S19 = 5
		the system start to apply pre-torque.	S19 = 4
U11	PRE TORQUE PERIOD	It determines Ti interval of the process. Decreasing this parameter makes pre-torque stronger	S19 = 5 S19 = 4

5.5.2.b) Pre-Torque-Analog

Value of [S19]	Control Method	
	Pre-Torque-Analog	
5	Zero speed control is performed with pre-torque by using the feedback	
	coming from the analog output of the weight transducer of cabin.	

By using this method, the best control of the starting can be achieved. However, an analog voltage output proportional to the load inside the cabin is required to implement this process. ILC will estimate and apply the required torque to hold the car stable by using the analog signal as feedback.

In this application ILC learns the torque required for each new load and saves them for further use. Therefore, after installation you will feel some rollback or jerks for a while. But, after some number of starts with various loads, load versus torque data will be filled and there will be no jerk or slip in starting. In case you need to clear this table, such as when you have replaced a device from another lift, you should use the application in services **R19-CLEAR LOAD DATA**. You can adjust the system response by means of Special Parameters U08...U11 as described in previous section 5.5.2.a.

5.6) GROUP OPERATION

ILC can work in lift groups up to eight lifts. Each group lift must have CSI Can interface board plugged into. One group controller device ICG must be used as group manager. Communication between ICG and group lifts is carried out by CAN-BUS. It is low speed, fault tolerant.

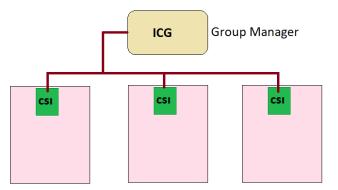


Figure 5.6 Group Connection

Related Parameters in Group Operation		
[A07] GROUP NUMBER		
0: Simplex Lift		
17: Group Lift. The value of A	07 is the Group ID of the lift	
All lifts in group must have a u	nique group ID.	
[A02] COMMAND SYSTEM		
2: Down Collective		
3: Up Collective		
4: Full Collective		
Other values (other traffic syst	ems) are not supported in group operatior	۱.
All group lift must have the sar	ne traffic system [A02] adjusted.	
E/7 5 5 02 102 R·2	75	AE-MAESTRO

[B12] MISSING FLOOR (GROUP LIFT) If there are one or more floors of the other lifts in the group below the base floor of this lift, then the number of missing floors downwards must be defined in this parameter. This information is used in adapting the floor levels in group communication. If all lifts have base floors at the same level, then set this parameter to 0. The figure shows an example how the values of B12 are B12=2 given. B12=1 Note that the number of floors in group lift must not be the same. B12=0 B12=0

[T29] GRUP DOOR WAIT

If a door will not be closed after a door close comment as long as the time defined in this parameter then this lift will not work as a group lift anymore. Its jobs are cleared and group connection is terminated.

[E09] - GROUP CAN CHANNEL

If the lift is employed in a group, then CAN2 is used as group communication channel with group manager and E09 must be set as 2 **[E09=2].**

In this case you are not allowed to define any other device communications in CAN2. In simplex lift leave this parameter as 3.

5.7) SETTING PASSWORD

You can change your password from this utility. Upon entering this menu, system asks for the current password. This utility can be executed through **SERVICES** icon -> **R14-PASSWORD SERVICES**. If you enter the password correctly, system permits you to change system password to a number between 0 and 32.000.

5.8) FACTORY DEFAULTS

When you are first starting with the controller or you want to clear all of the current parameters to reorganize them, you can set factory defaults. This utility can be executed through **SERVICES** icon -> **R08-FACTORY DEFAULTS**. In this operation all parameters are first cleared and then set according to the lift type you have specified.

5.9) BACKUP OF PARAMETERS

After you have completed everything related to installation and adjusting the lift parameters it is very useful to save a copy of the full set of the parameters in a different memory location in the controller. This backup set of parameters are not open to any modification. They can only be saved as a whole for backup or restored all together from backup. To save a backup of the current parameter set go to Services menu. When you have entered this section, you will be asked to enter an operation code. You should enter "536" to run backup routine.

CHAPTER 6 – ERROR LOG AND ERROR CODES

In AE-MAESTRO Series Control Systems, all determined errors are reported at runtime on main screen and stored in permanent memory. Error storing capacity of system is limited to 250. If an error occurs when there are 250 errors stored in memory, then oldest error is cleared and the new one is stored. You can see last 250 stored errors anytime by using screen or from your computer connection.

6.1) ERROR CODES

CODE	ERROR	EXPLANATION	
1	Ston Circuit Onen	Stop circuit-120 (Speed regulator, parachute contact, stop buttons)	
1	Stop Circuit Open	is open.	
2	125-135 Circuit is Open	Door Contact circuit 125-130 is open during motion.	
3	140 Circuit is open	Door Lock circuit-140 is open during motion.	
4	KDK contact is shorted	Contact of KDK contactor is short. Read section 11.2.	
5	DRB contact is shorted	Door Reset input is shorted. Read section 11.2.	
		1-At fast speed, system cannot not get new floor data within the time	
6	Pass Time Overflow	period defined at [T05].	
0	Pass Time Overnow	2-At slow speed, system could not reach floor level within the time	
		period defined at [T31].	
7	Door Cannot Open	After any door open command door contacts are not open within the	
		period defined at [T20] for door A or [T25] for door B.	
		After transmitting any door close command, the door is not closed.	
8	Door Not Closed	[KL1=0] for door A, [KL2=0] for door B within the time period defined	
		in [T21] for door A or [T26] for door B.	
9	817 - 818 Are Open	Up and down limit inputs [817=0] and [818=0] are both open	
		simultaneously.	
10	Floor Number is wrong	The floor number obtained from the floor selector system is not	
		correct.	
		Inconsistency in floor number on displays and car position. This error	
11	Counter Error	arises if the floor number is not 0 when the car is at bottom floor	
		[817=0] and [818=1] or floor number is not top floor when the car is	
		at top floor [817=1] and [818=0].	
12	Encoder Direction Error	Encoder rotation direction is not the same as the car travel direction.	
		Interchange A and B channels of the encoder connection.	
		No encoder signal is received from encoder while the car is moving	
13	No Encoder Signal	within the time period defined [T40]. Check electrical connections of	
		encoder circuit as well as the mechanical coupling of the encoder.	
14	Bypass Error	If the bypass input is open [BYP=0] and the lift is in normal mode then	
		this error arises. Bypass switch must be normally closed.	
15	Park Floor Definition	Defined park floor parameter in [B07] is above the maximum number	
15		of stops defined in [A01].	
		[B07] can be maximum [A01]-1. Defined fire floor parameter in [B05] is above the maximum number	
16	Fire Floor Definition	of stops defined in [A01].	
		[B05] can be maximum [A01]-1	

CODE	ERROR	EXPLANATION
	Internal communication problem between electronic boards in	
17	U2 Communication Error	the device. Switch off the device. If the problem persists then consult
		the technical service.
		System cannot communicate with car units. Check serial
		communication states of the main board and the car controller. If BE
		or LEDs on CAN drivers are ON then there is something wrong either
18	No Car Communication	in electrical wiring of CAN units or in values of the termination
		resistors. Check also parameter [E07]. It defines the CAN-channel
		used for car circuit. You should connect car communication cables to the CAN-port denoted in [A18]
		MC contactor is not OFF.
		MCI input must be used when ILC is used not in STO mode but with
19	MCI Short Circuit	serial contactors at the output. This error is arised when MC
		contactor is OFF but MCI input is not active.
20	NO PTC/Thermistor	Motor is overheated or PTC circuit is not connected [PTC=0].
21	Floor Pulse Error	Current car position is inconsistent.
22	Door Motor Hot	Automatic door motor is overheated or DTP input is open [DTP=0].
23	Number of Relevels	Releveling has been started 20 times but cannot be completed
		properly.
		If floor selector is incremental or absolute encoder then you need
24	No Shaft Learn	execute shaft learning procedure at least once. If this has not been
		done you will get this message.
25	Encoder Data Error	Floor Pulse data is missing or faulty. Shaft learning should be carried out.
		If [B27=1] then checking MR temperature is carried out by an
	Machine Room	external measuring device. The controller reads its output through
26	Temperature	the terminal input [THR]. Check if THR input is connected to the
		external device and the adjustment of the external device.
		MC contactor is not ON.
		MCI input must be used when ILC is used not in STO mode but with
27	MC is not ON	serial contactors at the output. This error is arised when MC
		contactor is ON but MCI input is still active.
28	MC is OFF during travel	MC contactor is OFF during motion.
		Although there are no contactors activated, there is no signal in CNT
29	Contactor Failure	terminal. Check CNT wiring and definition. Check also the wiring of the CNT circuit through normally closed aux-contacts of the
		contactors.
30	TKF Contactor is not ON	TKF contactor is not on. See section 12.1.
31	Low Voltage	DC Bus voltage of the motor driver is low.
32	High Voltage	DC Bus voltage of the motor driver is high.
	-	If ML2 switch becomes passive [ML2=0] while the car is staying at
33	ML2 Open at Floor	floor level this error is created. If the doors are open then it is an UCM
55		error and the system is blocked. Check the magnet and
		switch locations of ML1 and ML2.
		This error is reported if ML2 switch is still on [ML2=1] when the car
34	ML2 Short Circuit	has left the door zone. Check the switches, magnets, inputs and
		wiring related to ML1 and ML2.
35	Phase L1/R Missing	L1/R phase is not present. Check line phases.
36	Phase L2/S Missing	L2/S phase is not present. Check line phases.
37	Phase L3/T Missing	L3/T phase is not present. Check line phases.

CODE	ERROR	EXPLANATION	
38	Switching Error	There is voltage on DC Bus although input relays are not switched on.	
39	SPI Error	There is communication fault between internal microprocessors.	
40 Door Contact Failure		Despite doors being physically closed, door contact is not closed. The	
40	Door Contact Failure	physical state of the door is controlled by KL1 and KL2 inputs.	
41 Levelling Period		If levelling job cannot be completed within the time period defined	
41	Levening Period	in the system (10 sec) this error is created.	
42	ARN Contact Error	ARN contact failed. See section 11.1.	
43	ARD Contact Error	ARD contact failed. See section 11.1.	
		According to EN81-20/50 car doors must be physically closed in	
44	KL1 – KL2 Are OFF	bypass mode in any inspection travel. KL1 and KL2 inputs on car	
		doors are used to check this. If any door contact KL1 or KL2 is open	
		in inspection travel in bypass mode this error is created.	
		This error is reported if SDB board cannot bridge safety line after	
45	SDB Bridging Error	activated. Check 140, ML1, ML2 inputs, ML1 and ML2 switches and	
		related magnets.	
47	Resetting Inhibited	Resetting car position after re-start has been inhibited by parameter	
	_	[B35]. This is a warning message, not fault.	
48	ERS Battery Error	Voltage level of the battery of the emergency power supply is low.	
		After the rescue operation has been completed the doors are	
49	ERS Door Not Open	opened. If the doors cannot be opened within the time period [T32].	
		Check door supply voltage and door control signals	
		If in rescue operation the door cannot be closed within the time	
50	ERS Door Not Closed	period determined by timer [T32] then this error is created. Check	
		door supply voltage, door contacts and door control signals	
		Both ARD and ARN contacts are wrong simultaneously.	
51	ARN+ARD ERROR	See section 11.1.	
50		If the emergency rescue operation takes a longer than the period	
52	ERS Maximum Period	stored in timer parameter [T36] this error is reported.	
		If ML1 switch becomes open [ML1=0] while the car is staying at floor	
53	MI 1 Onon at Flags	level this error is created. If the doors are open then it is an UCM	
53	ML1 Open at Floor	error and the system is blocked. Check the magnet and switch	
		locations of ML1 and ML2.	
		This error is reported if ML1 switch is still closed [ML1=1] when the	
54	ML1 Short Circuit	car has left the door zone. Check the switches, magnets, inputs and	
		wiring related to ML1 and ML2.	
55	Mode Error 3CP	Limax3CP absolute encoder system cannot change its mode.	
		If the parameter [A14=4] then this message is displayed when all fire	
56	Fire Reset	inputs have been returned to their normal positions. System will wait	
50		as blocked until switching to inspection mode or a re-start. See	
		section 9.2.4.	
		If a hall button stays more than 300 seconds pressed then the	
57	Call Button Error	system reads it no more, set as faulty and display this message.	
		Entering into inspection mode clear this message. This facility can	
		be activated or inhibited through adjusting parameter [E02]. This	
		facility is available only in parallel landing buttons.	
58	Earthquake	Earthquake signal is received [EQK=0] due to a low signal at EQK	
	-	input. The system will switch into earthquake mode.	
59	Bottom Final Stop	The car has exceeded bottom final stop downwards.	

CODE	ERROR	EXPLANATION	
60	Top Final Stop	The car has exceeded top final stop upwards.	
		Door contacts are not closed (125-130) within the defined time	
61	Retiring Cam Period	period after the retiring cam has been energized. Check door	
		contacts, the activation process and definition of the retiring cam.	
		If there is a pit controller [A18=1] then the controller communicates	
	Pit Board	with it. If no communication is established with pit controller board	
62	Communication Error	then this error is created. Check CAN shaft connections and [E08]	
		parameters. Please note that pit board communicates via shaft CAN	
		channel.	
63	Brakes are closed	This error is created if the brakes of a gearless machine are closed	
		during motion.	
		Although the brake coils have not been energized, no signal is received from brake feedback contacts. Check BR1, BR2 terminals,	
64	Brake Not Closed	contacts, definitions and related wiring. This error is reported only if	
		[A16=1].	
		Although brake coils have been energized, signal is received from	
65	Brake Not Opened	brake feedback contact. Check BR1, BR2 terminals, contacts,	
_	•	definitions and related wiring. This error is reported only if [A16=1].	
		Although SGD board has not been energized trough RSG output, SGC	
66	SGC Error 1	input signal is passive [SGC=0]. This error is created only if [A16=1].	
		Check RSG output and SGC input, related wiring and definitions.	
		Although SGD board has been already energized trough RSG output,	
67	600 F	SGC input signal is active [SGC=1]. This error is created only if	
67	SGC Error 2	[A16=1]. Check RSG output and SGC input, related wiring and	
		definitions.	
68	Photocell Error 1	An external photocell error is detected through FE1 input.	
69	Photocell Error 2	An external photocell error is detected through FE2 input.	
		When the motion has been started and coil on the overspeed	
70	Governor Contact	governor has already been energized, if SGO input signal is still ON	
	Error-3	[SGO=1], then this error is reported. Check the coil on the speed	
		governor, its wiring and SGO input terminal.	
		Rescue speed is exceeded during a manual rescue operation. Release brake activation buttons to stop the lift. Do not press brake buttons	
71	Rescue Speed Exceeded	continuously. Press and release them in short periods while	
		monitoring the car speed not to exceed 0.3 m/s.	
		Unintended Car Movement UCM is detected. This error is created if	
		the car leaves the door zone with open doors. This error is stationary	
72	UCM Fault	and must be cleared manually. Check ML1 and ML2 switches and	
		related magnet positions. Check also the UCM device connections	
		and settings.	
		If SGO input signal is still OFF [SGO=0] although OSG A3 coil has not	
73	Governor Contact Error-1	been energized then this error is created. Check SGO definition,	
		contact and wiring. Check the coil on the speed governor.	
		SGO input signal is still ON [SGO=1] although OSG A3 coil has already	
74	Governor Contact Error-2	been energized, Check SGO definition, contact and wiring. Check the	
		coil on the speed governor.	
75	Safety Gear Activated	Safety gear has been activated. The information is obtained through	
	-	PFK input	

CODE	ERROR	EXPLANATION	
		When special last floor switches (917, 918) are used, [A17=1], and if	
76	End Switch Failed	both switches are open simultaneously, [917=0] and [918=0], then	
	Lifu Switch Falleu	this error is created. Check 917 and 918 inputs, definitions and [A17]	
		parameter.	
77	HD/HU Failure	High speed switches (HU or HD) are not responding properly. Its state	
		is inconsistent with other shaft switches.	
	Encoder Communication	When a CAN absolute encoder is used as floor selector, [A05=4], this	
78	Failure	error is created if the system cannot communicate with the encoder.	
-		Check encoder wiring and parameter [A05].	
		When incremental encoder is used as floor selector [A05] and if the	
		encoder cannot complete learning process, then this error is	
79	Encoder Learning Failure	reported. Check encoder wiring and parameter [A05]. Check also	
		ML1, ML2, 817 and 818 switches.	
		This error is reported if the contactor feedback input is still on	
82	CNT Short Circuit	[CNT=1] while the lift is in motion. Check CNT terminal, contactor	
		aux. contacts and their wiring.	
		If ALSK or ALPK board is not connected to the car CAN-bus or there is	
84	ALSK/ALPK Not Present	a communication fault in this bus then this error is reported. Check	
		terminal board, CAN bus wiring and 24V power supply.	
05	SDR 141 Foult	When the car is at door zone and bridging is activated by the	
85	SDB 141 Fault	controller then 141 must be ON. If not, then this error is created. Check SDB board.	
-		Door test has not been completed at the floor properly. Check door	
86	Door Test Error	contacts.	
		To return to the normal mode from shaft inspection it is not enough	
		to switch off inspection. KRR input must be trigged once to clear shaft	
87	Shaft Inspection Reset	inspection. This message will be displayed after the shaft inspection	
		switch has been returned to normal until KRR is switched once while	
		the doors are closed.	
		Door closed contact of the first door is still closed [KL1=1] though the	
88	KL1 Shorted	first door is open. Check contact, wiring and input definition of KL1.	
		Door closed contact of the second door is still closed [KL2=1] though	
89	KL2 Shorted	the second door is open. Check contact, wiring and input definition	
		of KL2.	
00	TKF Shorted	TKF contactor is not activated at start. If TKF input is read ON it means	
90		the contact of TKF contactor is shorted. See section 12.1.	
91	Speed Error	Motor cannot catch the speed level driven by the device.	
92	Slow Down Timeout	Travel duration in slow down path (while creeping speed is	
52		referenced) exceeds the time period defined in parameter [T31].	
93	Group Traffic System	The traffic systems [A02] of the lifts are not all equal.	
		Less floors than the registered value in parameter A01 are read	
		during floor learning process.	
94	Missing Floors Read	Check parameter A01 for the number of floors in the system.	
		Check ML1, ML2 switches and locations of ML magnets.	
		Check the positions of 817 and 818 switches.	
		More floors than the registered value in parameter A01 are read	
		during floor learning process.	
95	Excess Floors Read	Check parameter A01 for the number of floors in the system.	
		Check ML1, ML2 switches and locations of ML magnets.	
		Check the positions of 817 and 818 switches.	

CODE	ERROR	EXPLANATION		
96	Speeds > Motor Speed	Any of the travels speed S01S08 is greater than the motor speed		
90	speeds > wotor speed	M02. Check travel speeds and motor speed.		
		The parameters for dynamic brake starting [U03] and stopping [U04]		
98	Dynamic Brake Value	are inconsistent with themselves or with the line voltage parameter		
		[U06]		
99	Car Light Off	The car is dark while busy signal is on. If no light detector for cabin is		
		used in the system, then clear the definition of LGT input.		
		Driver has detected an overcurrent more than two times of the		
101	Overcurrent	nominal current for more than 2.5 sec.		
		1) The weight in Counterweight may be not correct. Check it.		
		2) Encoder Offset may be wrong. Carry on tuning again.		
		Motor current cannot be read by the device.1) If error arises in REST state: there may be an internal failure		
		in the device.		
102	Current Error	2) If error arises while motor is running: Electromagnetic		
		disturbances may cause false current reading. Check		
		earthing connections of the device, controller and motor.		
		IPM module sends error signal.		
		At Start: [T08]-BRAKE WAIT PERIOD may be lower than the		
		actual brake opening period. Check the value of [T08] and		
		increase it when necessary.		
		In Motion: IPM has detected an instantaneous high current.		
		Check if motor parameters has been entered correctly. Check		
		if the counterweight is correct.		
103	IPM Error	At Stop: [T13]-BRAKE DELAY PERIOD valu may be lower thatn		
103		the actual motor brake closing period. Check the value of [T13]		
		•••		
		and increase it when necessary.		
		[S17]-STOPPING SPEED parameter may be adjusted greater		
		than required. Set it to 0.001 for synchronous motor and a ise		
		0.002 for asynchronous motor.		
		During Tuning : IPM has detected an instantaneous high		
		current. Check the earthing system and connections.		
		Encoder is not connected or it is faulty.		
		At standby: Check encoder, its connection cables and connectors. In Motion: No motion is detected while motion command is		
		present. If the motor rotates check encoder connections and		
		earthing system.		
		If there is no motion in synchronous motor repeat tuning		
	Encoder Error	operation. If there is no motion in asynchronous motor check		
104		the values of P5-Control Parameters.		
		During Rotational Tuning: Rotation of the motor is more than		
		expected. Increase [C20]-TUNING CURRENT parameter to		
		make driving more powerful.		
		During Stationary Tuning: Motor rotation is detected. Check		
		motor brakes. They must be closed and able to prevent any		
		rotation during operation. Decrease the value of [C20]-TUNING		
		CURRENT parameter.		
		CURRENT parameter.		

CODE	ERROR	EXPLANATION
		Motor direction is opposite to encoder direction.
105		In Synchronous Motor: Tuning operation may not be
	Motor Direction Error	completed successfully. Repeat tuning operation.
		In Asynchronous Motor: Reverse the value of the parameter
		[M17]-ENCODER DIRECTION.
		Fault in motor cables is detected. The cable connections
106	Motor Cable Error	between motor and the device is faulty or not present.
		Standby Mode: Absolute encoder interface board (ICA) cannot
		communicate with the Absolute Encoder in synchronous
		motors.
		Check ICA board and its connections to the encoder. If the
107	ICA Board Error	cables are correct then change ICA board.
		During Motion or Tuning : The electromagnetic disturbances
		generated by the motor driver may influence proper data and
		signal transmission from encoder to ICA board. Check earthing
		system and earth connection to the device.
		Encoder speed is greater than 115% of reference speed.
108	Overspeed Error	Check the values of P5-CONTROL PARAMETERS.
		Increase value of Kp in the region, where overspeed is detected, till
		below where motor vibration starts.
		Motor cannot reach reference speed.
		Check the values of P5-CONTROL PARAMETERS.
109	Low Speed Error	Increase value of Kp in the region, where speed cannot reach set
		speed, till below where motor vibration starts. Check encoder, its connection cables and connectors.
		In Synchronous Motor: Repeat tuning operation.
		Encoder speed is greater than 150% of motor nominal speed.
110	Motor Overspeed	Reference speed may be greater than nominal speed.
_	Error	Acceleration value S10 may be adjusted to high.
112	Permanent IPM Error	IPM sends continuously error signal to the motor driver.
112		IPM module of the device should be faulty.
		Failure in communication between internal microprocessors.
	Internal Communication	If the error arises only when the motor is driven then
113	Error	electromagnetic parasite may influence the device internal
		communication. For this, check earthing and related cables. If they
		are correct, then the device should be faulty. DC BUS voltage in the device is greater than the value of the
	DC Bus Reading Error	parameter U03-DYNAMIC BRAKE OPEN while motor driver is not
115		active.
		Check the value of U03 and U07-LINE VOLTAGE.
		STO circuit is active but no voltage in motor driver is detected.
	STO Supply Error	In Starting: Check STO circuit (SER board or contactors).
116		In Stopping: Motion command is removed before motor stopped.
		Check [S17]-STOPPING SPEED parameter.

CODE	ERROR	EXPLANATION
		Device cannot hold the motor at zero speed.
		First of all, check balance of the lift, namely counterweight.
117		If the error arises although there is no motor driving check earthing
	Zero Speed Error	and related connections.
		In Starting with Synchronous Motor: Pre-torque function should be
		activated.
		In Stopping: Check the value of [S16]-Stopping Mode parameter.
		Error in calculating Remaining distance.
118	Remaining Distance Error	The data coming from encoder may be wrong due to electromagnetic
		disturbance. Check earthing and related connections.
		No voltage is present in motor driving circuit after a motion
119	STO Enable Error	command.
		Check STO circuit (SER board or contactors) and related connections.
		Motor current is detected while no motion command is present.
120	Current w/o Motion	There may be fault in current reading circuit of the device.
		There may be short circuit in motor to its body.
		Read shaft data is inconsistent in learning process.
122	Car Position Error	Shaft learning operation may be carried out improperly.
		Check firstly the locus of the magnets and magnetic switches, clear
		shaft data and then repeat shaft learning process.
	Tuning Error	An error is arised during rotating tuning operation.
		No rotation of the motor is detected.
123		Be sure that the traction machine is not connected to the ropes.
_		Be sure that the brakes are opened.
		If all are OK then increase the value of [C17]-TUNING CURRENT to
		make the motor more powerful.
		Voltage value in Dynamic braking is greater than the operating
		value of the system.
124	High Voltage	Check braking resistor and its connections.
		Check if the value of the braking resistor has been selected
		regarding to the table in user manual.
		The resistances of the stator windings are not balanced.
		Disconnect motor cables from the device and measure the
125	Unbalanced Stator Resistance	winding resistances one by one.
		Measure the conductance of the windings to the motor body
		or earth.
125		If the measure coil resistances are not all equal or there is a
		short to the motor body then contact motor supplier.
		If the coils are balanced and no short is measured, then check
		the cables between motor and the device motor output.

CHAPTER 7 – UCM SERVICES (UNINTENDED CAR MOTION)

7.1) UCM

7.1.1) DEFINITIONS

DOOR ZONE: This is the region where the car is allowed to open the doors. It is determined by switches ML1 and ML2. Both ML1 and ML2 must be normally open contact switches.

UCM: Whatever the drive system is, if the car moves outside to the door zone while staying at the floor level and the doors are open this will be considered as an UCM error.

UCM BLOCK: When any UCM error occurs, then the system is blocked. This is a permanent error. A permanent error continues to block the system even if the error condition disappears. Switching the system to inspection mode or switching it off will not clear UCM block. UCM Block can only be removed by authorized person by using the UCM-CLEAR ERROR menu.

UCM TEST: This is the procedure to test if the lift is responding correctly within norms when an UCM error occurs.

7.1.2) RELATED PARAMETERS

The parameters related to the activation or error behaviour or the UCM error are listed below:

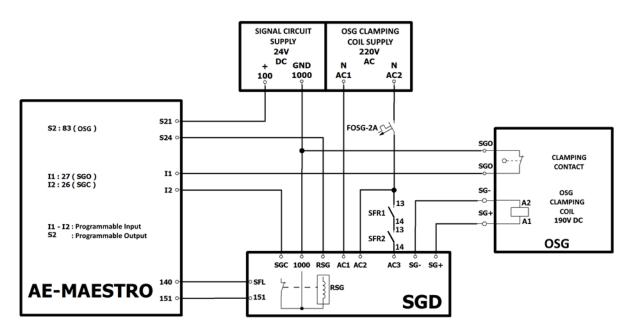
A16-UCM CONTROLLER: In order to activate UCM control A16 should be 1. If [A16=0] then no UCM errors will be raised, no UCM drivers are activated and no checks for UCM conditions are carried out.

B04-UCM ERROR BLOCK: This parameter determines the blocking of the system after any UCM error. You can allow or inhibit blocking after any UCM error. Inhibiting blocking after an UCM error does not conform to the standards EN81-20/50 and EN81-1+A3.

7.1.3) UCM Detection (Unintended Car Motion)

7.1.3.a. While the Car is Resting at Floor Level

Whatever the drive system is, if the car moves outside to the door zone while staying at the floor level and the doors are open then this will be considered by the controller as an UCM error (ML1 or ML2 is 0). Error No:72 "UCM ERROR" will be displayed on the screen.


7.1.3.b. During Pre-Opening Doors or Releveling

If the lift moves out of the door zone due to any reason during the re-levelling motion then controller considers this situation as unintended car motion and switches the system to BLOCK mode. Error No: 72 "UCM Error" will be displayed on the screen.

If any bridging fault is detected in SDB board during the early door opening or levelling motion then the controller switches to BLOCK mode and "Error No. 45 SDB Bridge Error" message will be displayed on the screen.

7.1.4) UCM Error Clear

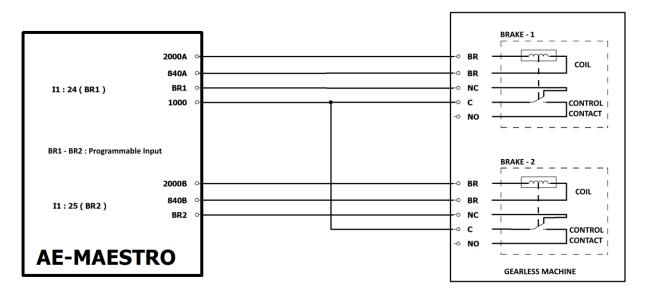
If any system block due to any UCM error should be cleared manually. UCM error clearing should only be carried out by authorized personnel. This utility can be executed through **SERVICES** icon -> **R01-UCM ERROR CLEAR**.

7.2) UCM in Electric Lifts with Asynchronous Motor

Figure 7.2a UCM in Electric Lifts with Asynchronous Motor

In geared machines, UCM protection is ensured by controlling the speed governor together with SGD board. Therefore, SGD board must be used for UCM control for asynchronous motors (geared traction machine).

When there is a motion command in the system, then the controller activates SGD board through a programmable output, 57-Speed Governor Coil. This activates the relay on SGD board, which activates the coil on the speed governor and the control pin on the speed governor will be pulled back. So, the speed governor can rotate freely while the car is moving. Any attempt to move the car while the pin is not pulled back causes in activation of safety gears.


- When the coil is energized then the pin inserted into the wheel of the governor will be pulled back. The controller monitors the status of the pin and coil activation relay on SGD through SGO and SGC inputs, respectively.
- If SGC input will not be off within 3 seconds after the SGD board has been energized, Error No: 67 "SGC ERROR-2" will be generated.
- The SGO input must be off (0) within 3 seconds after then. If SGO is still ON at the end of this period error 74 will be generated by the controller. It will display "Error No:74 Governor Contact Error-2" on the screen.
- When the controller terminates motion then output 57 is switched off. If the SGC input is not switched to 1 within 3 seconds, then the controller generates error 66 with a message on the screen as "Error No. 66 "SGC Error 1".

- SGO input is checked after motor contactors are off. It should be ON. if SGO input is OFF then "Error No:73 "Governor Contact Error-1" is generated which causes the system to enter BLOCK mode.

If SGO and SGC inputs are correct then AE-MAESTRO controller starts motion. If any changes in these inputs are detected during motion, then the lift will be stopped immediately and error 70 will be generated with a message "Error No:70 Governor Contact Error-3".

The system will be blocked after the errors 66, 67, 74 related to SGO and SGC input states. However, this blocking is not permanent and will be terminated when the system is switched to the inspection mode or switched off.

Nevertheless, if the errors 66, 67, 74 are repeated by the number specified in parameter [B05], then the system will be blocked permanently. Switching to inspection mode or restarting the system will clear the error.

7.3) UCM in Electric Lifts with Synchronous Motor (Gearless Machine)

Figure 7.3a UCM in Electric Lifts with Synchronous Motor (Gearless Machine)

All gearless machines have brake monitoring contacts. AE-MAESTRO board reads these contacts through BR1 and BR2 inputs. These contacts are normally closed. Therefore, BR1 and BR2 inputs are always ON when the brake coils are not activated, in case of resting. If one or both inputs are OFF then the controller switches the system to BLOCK mode and "Error No:64 Brake Not Closed" is displayed on the screen.

When the controller starts motion then the brakes are opened. This makes these contacts OFF. In this case, if any one or both of the BR1 and BR2 inputs keep to be high 1 after 3 seconds, then the controller switches the system to BLOCK mode and "Error No:65 Brake Not Opened" will be displayed on the screen.

7.4) Manual UCM Test

This menu is to simulate an unintended car motion that may occur. It used to test the real behaviour of the lift in case of an UCM event. This test can be executed through **SERVICES** icon -> **R05-UCM TEST**.

7.4.1 Warning

Before starting this test process, be ensured that there is nobody or any load inside the cabin and prevent usage of the lift. In order to be able to perform the test, the system must be in the normal mode and the cabin light (Busy signal is off) must be turned off to ensure that the lift is not in use. Test operation cannot be performed in inspection mode.

7.4.2 Test Procedure

- **a. SELECTING TEST SPEED**: "TEST SPEED: SLOW" is displayed on the screen. You can switch between HIGH and SLOW speeds by pressing RIGHT (>) and LEFT (<) buttons. Confirm the selected test speed.
- **b.** SELECTING TEST DIRECTION: You can switch between UP and DOWN speeds by pressing (\uparrow) or (\downarrow) buttons. Confirm the selected test direction.
- **c.** In next step, "UCM TEST START" is displayed on the screen. Press (个) button to start manual test.
- **d.** Manual test has been started by the controller by opening the door. When door starts to open, the return of the safety line becomes open circuit (140=0).
- **e.** Then the controller activates the door bridging process through SDB board which makes the return of the safety line ON (140=1).
- f. When the safety line is open and door circuit has been bridged the system is activated.
- **g.** If the machine is geared, then overspeed governor coil is energized. When the signal at the SGO input is off, then the controller initiates motion in selected speed and direction.
- **h.** If the machine is gearless (synchronous motor) then the controller initiates motion in selected speed and direction.
- i. When the car goes out of the door zone (ML1=0 or ML2=0) with open doors then the controller considers it as UCM and the car is stopped immediately. Contactors and the door bridging are switched off. All adjusted delays of the switching elements in stopping are disregarded.
- **j.** The car position, namely the vertical distance from the cabin sill to the floor level should be measured. It should be within the limits specified in clause 5.6.7.5 of EN 81-20.
- k. The controller enters in the BLOCK mode. It does not respond to calls. "Error No: 72 " UCM ERROR " is displayed on the screen. This is an UCM error and it is permanent. The lift can return to the normal mode only after clearing this error by menu. SERVICES -> UCM ERROR CLEAR.
- I. If no error has been generated by the controller while the car is travelling outside of door zone with open doors then we can decide that UCM detection or activation of the system is not responding properly. A careful check of parameters, input and output settings and wire connection must be carried out. After fixing the problem this test must be repeated before giving the lift to the service.

CHAPTER 8 – RESCUE SYSTEMS

8.1) ELECTRONIC RESCUE SYSTEM

In AE-MAESTRO control system, there is an automatic rescue system (ERS) to rescue the passengers in case of power failure. Electronic Rescue System automatically switches on when the controller detects an error in mains phases. The device accepts several input voltages as power source in rescue operation. This voltage should be selected in parameter [A24]. There are two types application of rescue power system as described below.

8.1.1) Parameters used with Rescue Application

[A23] EMERGENCY RESCUE OPERATION ALLOWED: Emergency rescue operation is carried out only if [A23=1].

[A24] EKS VOLTAGE: Voltage supplied to the device in case of rescue operation.

[T36] MAXIMUM RESCUE PERIOD: If the rescue operation cannot be completed within the time period specified in this parameter, the controller terminates the rescue operation.

[T32] ERS DOOR WAIT PERIOD: Defines the time period in which the doors will wait open after reaching floor in a rescue operation.

[B20] ERS MK DELAY: It defines the delay required to stop the lift in exact floor level in rescue mode. Since the lift rescue speed is much lower than the travel speed, the car may not reach to the floor level when the stop command is activated. To reach to the floor level the car motion can be extended (stopping delayed) related to this time period.

8.1.2) Hardware Connection Types

8.1.2.1 Electronic Rescue System-1: Type-J

In this system, motor energy is supplied by the batteries and other energy requirements are provided by an UPS. The sample system is shown in Figure 8.2a.

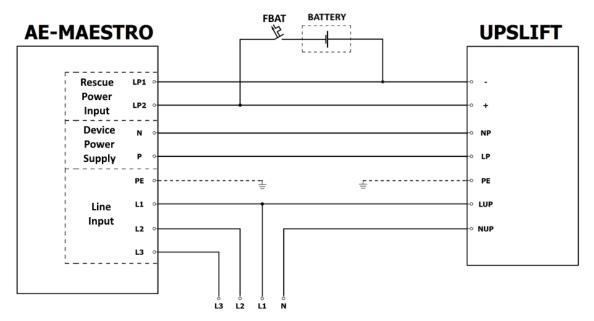


Figure 8.1a J Type Rescue Connection Diagram

8.1.2.2 Rescue System-2: Type-N

In N-type rescue system only UPS is used as the energy source for the lift. It is shown in Figure 8.2b.

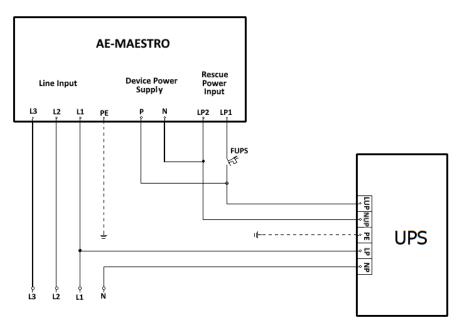


Figure 8.1b N Type Rescue System Connection Diagram

8.1.3) Electronic Rescue Procedure

The device has a phase detection system that monitors the status of the power line. As long as the line is stable, the phase information FKK observed from the input screen is active (FKK*).

If ILC detects any power failure in line phases, then it waits for the time period defined in **parameter [T16]**. If the line is not restored within this period, then it enters in rescue mode. The first operation in rescue mode is the isolation of the panel from the mains supply and connecting to the emergency power supply.

Rescue Process:

After the rescue direction is selected, the motion continues until any floor level is reached. If the rescue operation is not completed within the **time period [T36]**, the controller will terminate this operation by generating "52-ERS Period Exceeds" error. When the lift reaches the floor level, the doors are opened to allow the passengers to go out of the cabin. The doors are closed again after waiting four times of the time period defined in **[T06]-DOOR ON WAITING** parameter.

At the end of the rescue operation the system is stopped. Contactors are disabled and no further action is taken until the mains power returns to normal.

8.2) MANUAL RESCUE SYSTEM

8.2.1 RECALL SYSTEM

If the controller is powered by line or any other emergency power supply, then RECALL system can be used to rescue the passengers in the cabin. Recall is activated by **870** terminal. Pressing up (**551**) and down (**550**) buttons on the recall command box makes the car move, respectively. All shaft limits can be overridden by recall. So, the car can be moved beyond the limits. However, remaining part of the safety line must be closed including doors.

8.2.2 BRAKE OPENING

If the controller is fed by an emergency power supply which is not capable to drive motor then brake opening method can be used. In this method the brakes of the machine are activated by pushbuttons in the controller. However, there must be a speed limitation system then to prevent free fall of the car. According to the lift standards the car speed must not exceed 0.3 m/s. In brake opening method the controller is completely out of the process. Everything is carried out by the operator. Therefore, the operator must observe the speed and stop the lift by releasing the buttons whenever the car speed exceeds 0.3 m/s. The operator must not press brake buttons continuously. The buttons should be pressed and released in short periods in order to be able to control car speed and prevent the speed going out of the control.

ILC has a special feature to facilitate this job. The front panel can be used as a monitor of the car motion. In order to start this function, **MRC** input must be defined and activated. Then the led display on the front panel shows the car speed as well as travel direction and sends an audible alarm when the car speed exceeds 0.3 m/s.

Please be informed that open loop systems (without motor encoder) where no speed feedback is present cannot be employed so.

CHAPTER 9 – FIRE SERVICES

ILC supports two lift standards related to fire event, EN81-72 and EN81-73.

9.1) Selecting Fire Standard

The fire standard which will be used in lift operation should be defined in parameter [A14].

[A14] FIRE	[A14] FIRE STANDARD		
0	EN81-73		
1	EN81-72 Fire fighter Lift		
2	EN81-72 Fire fighter Lift with car fireman switch		
3	Reserved		
4	EN81-73 with blocking after operation		

If [A14=0] is selected then in case of fire the lift travels directly to the fire exit floor, opens the door and waits there without accepting any calls. The lift cannot be used anymore.

If [A14] is selected greater than zero then the lift can be used by fireman as fire-fighter lift in case of a fire.

9.2) Fire Exit Floor and Fireman Access Floor Definition

9.2.1) Floor Definition

There are 4 programmable fire inputs in the system. When any of them are activated then the lift clears all pending calls and directly moves to the **fire floor**. If the lift is in travel and the fire floor is in the opposite direction then it stops in the first possible floor, reverses its direction and moves to the fire floor.

If [A14=0], namely EN81-73 is the selected standard, then fire floor shows the floor where the passengers inside the cabin should exit in case of brand.

If [A14>0], namely EN81-72 is the selected standard, then fire floor shows the floor where the fireman can enter the cabin to get its control to rescue people in the building.

The related input names and parameters for fire floors are shown below:

	Input Name	Parameter which stores Fire Floor
1.Fire Floor	FR1	[B14]
2.Fire Floor	FR2	[B15]
3.Fire Floor	FR3	[B42]
4.Fire Floor	FR4	[B43]

Depending on the activation of the fire inputs functions FR1 ... FR4, related floor will be selected as the target floor (fire floor) for the lift according to the B parameters listed above. If more than one FRx inputs are active simultaneously then the one with smaller number is selected as the target floor.

9.2.2) Fire Input Polarity

Parameter [**B40**] defines of the active state of the inputs FR1...FR4 as normally open or normally closed.

Parameter [B40] Fire alarm is activated	
0	if the input FRx is passive, namely not connected to 1000.
1	if the input FRx is active, namely connected to 1000.

9.2.3) Outputs

22	Fire Alarm (Fire Operation started)	
23	Down in Fire (Down Motion in fire operation)	
24	Up in Fire (Up Motion in fire operation)	
25	Fire Door Alarm (Slow Closing Signal in fire fighter lift in fire phase 1)	
64	Fire No Exit (Car at fire exit floor in EN81-73 standard)	

9.2.4) EN81-73 Related Parameters

Parameter B41 If the lift is at fire exit floor in case of a fire alarm, then	
0	the doors will wait open
1	the doors are closed after door open wait period ([T6] and [T22]).

Messages	
Fire Reset	Although all fire inputs have been returned to their normal positions, after a fire state then the system will be blocked and do not return to normal state, if the parameter [A14=4]. Returning to normal operation is possible by a re-start or through inspection mode, namely by entering and exiting from inspection.

9.2.5) Parameters Related to Fire Fighter Lift (EN81-72)

Parameter B39	It defines the number of car doors at the fireman access floor (as 1 or 2).
---------------	---

Input Code	Input No		
FRM	43	Fireman Switch at fire fighter access floor	
FRC	44	Fireman Switch in car operating panel	
AL1	121	Door open limit switch contact	
AL2	131	Door open limit switch for second door	

CHAPTER 10 – TEST SERVICES

10.1) TEST MENU

There is a special utility in ILC system for testing the lift in normal operation. The doors or calls can be easily cancelled. A call to the top or bottom floor can be created and any number of random lift travels can be executed automatically.

This utility can be executed by pressing **TEST MENU** icon in main menu.

Test menu can be activated at any time.

The functions are as follows:

- a) Call to Top Floor: A car call to the top floor is created.
- **b)** Call to Bottom Floor: A car call to the bottom floor is created.
- c) Calls: Car and Landing cars are disabled or enabled. When disabled '-' sign and when enabled '+' sign is shown.
- **d) Doors:** Doors can be disabled or enabled. When enabled '+' sign is shown and the door opens normally. When disabled '-' sign is shown and the door does not open when arrived at the floor.
- e) Random Calls: A number is entered to the system. The lift starts by generating calls for a random floor as many times as the number entered, automatically. The condition specified by doors remains during the test. This procedure is usually carried out to test a new lift before giving it to the service.

DOORS+	CALLS+
ESC	MOVE

10.2) SHAFT LIMIT TEST

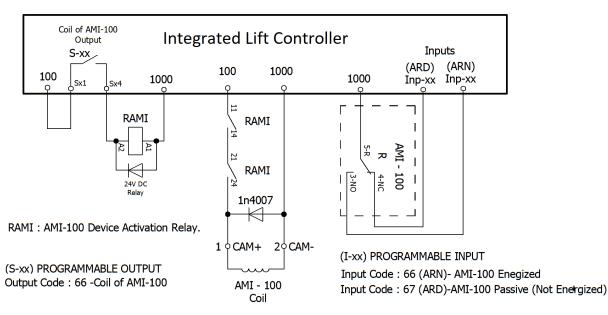
The performance of the shaft limit switches can be tested by using this test. To start the test the following conditions must be met:

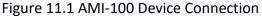
- The car must be at bottom floor to test bottom limit switch.
- The car must be at the top floor to test top limit switch.
- The lift must be in Normal operation mode.
- Busy signal must be off.

This utility can be executed through **SERVICES** icon -> **R06-LIMIT STOP TEST**.

When executed, the lift moves up (at top floor) or down (at bottom floor) in creeping speed [S08] in order to exceed shaft limits. The travel is terminated by opening the limit stop switches. So, the emergence of the stop error indicates that the limit switches are working properly. If no stop error is created then it means the limit switch is not working as required.

CHAPTER 11 – EN81-21 LOW PIT/LOW HEADROOM APPLICATIONS


EN81-21 standard sets the basic rules to design lifts which do not satisfy shaft requirements of EN81-20/50. It is obvious that the risk analysis is based on the mechanical design of the lift. However, the controller is involved into the process to detect dangerous situations to inhibit or prevent motion. There are many different solutions to EN81-21 lifts since the risk factors are not the same in all of them as well as designers or manufacturers are not the same. Therefore, it is impossible to say that one electrical solution will operate all EN81-21 applications, properly.


ILC supports some special devices designed for EN81-21 applications. Furthermore, it offers some very general functions.

When starting to a new EN81-21 project, the offered functions and sample projects should be carefully checked. It is recommended to consult support services before ordering a product.

11.1) AMI-100 DEVICE

AMI-100 is a device used for EN81-21 applications. It is enabled after setting [B29=1]. An output should be programmed as "COIL OF AMI-100" with output function number [66]. The operation is performed by regarding the state of the device learned by the inputs ARN and ARD. The coil is not activated in inspection mode but in recall mode. Related parameters are listed below. The state of the AMI-100 device is checked through ARN and ARD switches. When the device is retracted ARN is closed and when extended ARD is closed. If the contacts of ARN and ARD are not correct then errors are evoked.

AMI-100 Related Parameters are as follows:

[B29] AMI-100 DEVICE	
0	No AMI-100
1	AMI-100 device operation is enabled.

Output: O 66 Ami-100 device coil output (for EN81-21)

Input: 66-ARN	ARN This input is active when AMI-device has been retracted.
Input: 67-ARD	ARD This input is active when AMI-device has not been extended.

Error No		
42	ARN Contact Error	ARN=0 when AMI coil is activated or ARN=1 when
42		AMI-coil is passive.
40	ARD Contact Error	ARD=0 when AMI coil is activated or ARD=1 when
43		AMI- coil is passive.
51	ARN+ARD Error	ARD and ARN contacts are wrong simultaneously.

11.2) CHECKING OF MANUAL OPENING OF SHAFT DOORS WITH TRIANGULAR KEY

If the shaft doors are opened manually by triangular key then DIK input goes to low and the system is entered automatically into inspection mode. No further motion is allowed. In order to escape from inspection mode DIK Reset Relay must be activated once.

There are two main solutions for resetting DIK regarding to the door locking system of the landing doors. One of the systems described below should be selected by regarding to the contact type of the landing door, normally closed or bi-stable.

11.2.1 Landing Doors with Normally Closed Contacts

Inputs	
55-DIK	Door inspection key input This input function is used to detect if the automatic landing door is opened manually with a key. When this input which is normally closed is open, the system switches to inspection mode automatically. The system will return to normal mode only after a manual reset.
65-DRB	Door reset input (Reset button or switch)
79-MDK	Checking of the bi-stable state of the contactors (EN81-21). This input is used when contactors are employed to make the DIK function stationary.

In Figure 11.2a KDK contactors are used as bi-stable contacts.

Output	
O 70	Door reset coil. When activated landing door manual opening system will be
	reset.

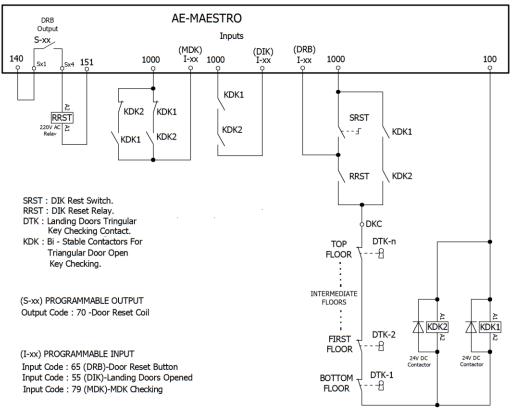
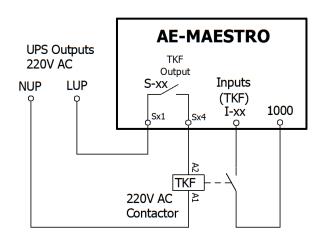


Figure 11.2a Landing Doors with Normally Closed Contacts

11.2.2 Landing Doors with Bi-Stable Contacts


If a system has bi-stable contacts for landing doors then there is no need to use KDK contactors. Refer to the manufacturer's data sheet.

CHAPTER 12 – SPECIAL FUNCTIONS

There are some special functions built in in the software of ILC for some special applications. Each special function has been implemented by using a number of parameters as well as I/O functions.

12.1) TKF

TKF contactors are used in MRL systems to prevent opening both brakes simultaneously while line voltage is present by pressing two brake open buttons manually. The electrical connections of TKF contactor coil and its normally open contact are shown in Figure 12.1.

TKF : TKF Contactor

(S-xx) PROGRAMMABLE OUTPUT Output Code : 75 - TKF Contactor

(I-xx) PROGRAMMABLE INPUT Input Code : 80 (TKF)-TKF Checking

Figure 12.1 TKF Contactor Connection

TKF is a contactor connected to power supply via TKF output. The state of TKF contactors is checked through TKF input. At start up the system checks the contactor contacts once if they are shorted, If so then error 90 is generated. After that it checks if the activation of the contactors. If TKF input becomes LOW while TKF coil is energized then error 30 is evoked.

The other contacts of the TKF are connected in series with brake opening buttons in such a way to prevent both brakes to be opened simultaneously when line power is present.

12.2) SIMULATION MODE

It is possible to run the device in simulation mode. Simulation can be performed for test, demo or education purposes where the device can run with or without motor connected. **Simulation operation is not allowed when the controller has been connected to the lift motor in the shaft or machine room.**

In simulation mode all functions are performed normally except shaft switches and encoder pulses. They are simulated by the device. Therefore, ML1, ML2, MKD, MKU, 817, 818 switches and encoder are not read. You can leave them unconnected in simulator operation. Besides this, some errors are inhibited.

You can simulate motion simply by giving calls. The virtual car will move and open its doors at arrival at the target floor.

Safety line must be connected.

F/7.5.5.02.102 R:2

Door contacts can be simulated by output relays driven by the door open/close signals. This is necessary when no door is connected to the controller.

[A19] SIMULATOR MODE		
0	Not Active	
0	Simulation mode is not active.	
	Simulator Motor with free running Motor	
1	In this mode the device runs the motor. Everything besides the inputs listed above	
	must be connected.	
	Simulator Without Motor	
2	In this mode the device runs without motor. You should leave motor connections.	
	The errors related to the motor operation and motor cabling will be ignored.	
	Simulator Only Device	
	In this mode the device runs without motor and any other external board. No	
3	connection to motor as well as car and shaft boards are required. The errors	
	related to the motor operation, motor cabling as well as shaft communication will	
	be ignored.	

The procedure is as follows:

- 1- Set parameter [A19] for desired Simulator Mode as explained above [A19>0].
- 2- Adjust one input as SIM (62) and activate SIM input by connecting it to terminal 1000.
- 3- Set floor selector parameter as motor encoder [A05=2].
- 4- Execute R10-CLEAR ENCODER DATA service routine.
- 5- If there is no door used in simulation process then adjust two output relays as DOOR CLOSE (output function 58). If door controller board is used you need only one.
- 6- Connect safety line through door contacts in the way depending on the door type or through the output relay defined in item 5 above.
- 7- Connect KL1 input through other output relay to terminal 1000.
- 8- Items 5,6, and 7 are for a system with one door. Duplicate them for the second door if there is one.